Publications

Qi et al. (2014) Highly Porous Silicon Membranes Fabricated from Silicon Nitride/Silicon Stacks, Small 10:2946-53

This study from Fauchet’s group at Vanderbilt examines the consequences of substituting nitride for the traditional oxide used as etch stops in the SiO2-Si-SiO2 stack used to make pnc-Si. The results demonstrate that pnc-Si will not only form on nitride layers, but that the resulting membranes have larger pores and higher porosity than when formed on SiO2 layers.


DesOrmeaux et al (2014) Nanoporous Silicon Nitride Membranes Fabricated from Porous Nanocrystalline Silicon Templates, Nanoscale, 6:10798-10805

Screen Shot 2015-03-11 at 11.13.30 AMHere we describe methods for making nanoporous silicon nitride (NPN) membranes with similar morphology, permeability, and separation characteristics as pnc-Si. Because nitride is inherently more chemically and mechanically stable than silicon, the NPN membranes can be expected to replace pnc-Si for many applications. Taking advantage of the discoveries in Qi et al., pnc-Si is formed on a silicon nitride layer and then used as a mask in a reactive ion etching process. In this way pnc-Si serves as a template for the resulting NPN membranes. We use nanoparticles to show that NPN membranes are capable of the same high resolution separations exhibited by pnc-Si membranes. The permeability of NPN membranes are considerably higher than pnc-Si because both the resulting pore sizes and porosities are larger than the pnc-Si template. Finally we show that like pnc-Si, NPN membranes are viable as cell culture substrates.


Nehilla et al (2014) Endothelial Vacuolization Induced By Highly-permeable Silicon Membranes, Acta Biomaterialia, 10:4670-4677

Here we describe a fascinating phenomenon where endothelial cells develop vacuoles, and eventually assemble into tubules, when cultured on ultrathin nanomembranes but not when cultured on less permeable or impermeable substrates. We further demonstrate that epithelial cells and fibroblasts also form complex tissue-like structures when cultured on our high permeability membranes for several days. We speculate that the cells are responding to the high basal permeability as if they are in a 3D culture environment. The results imply that substrate permeability is an overlooked parameter in cell culture studies that directly influences cell phenotype.


Mazzocchi et al (2014) Porous Membranes Promote Endothelial Differentiation of Adipose-Derived Stem Cells and Perivascular Interactions, Cell and Molecular Bioeng, 7:369-378 

This publication from the Gaborski lab at RIT demonstrates the benefits of porous substrates for stem cell culture and differentiation. In both monocultures and in co-cultures, porous membranes promote the induction of vascular phenotypes in adipose-derived stem cells (ADSCs). In a striking result, when ADSCs are separated from aligned endothelial cells by an ultrathin membrane with pores that limit direct contact, the ADSCs also align but in a direction perpendicular to the direction of endothelial alignment. The result is reminiscent of the orthogonal alignment of pericyte on the outside of endothelial microvessels. This result raises the intriguing possibility that cell-cell communication via soluble factors can help structure the layers of 3D tissue.


Chung et al. (2014) Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling, Lab Chip 14:2456-68

In this paper we use membranes as a semi-permeable barrier between a high flow rate microfluidic channel and a quiescent compartment for cell observation. Using both theory and experiment, we demonstrate how an ultrathin nanoporous membrane is the ideal tool to allow the rapid delivery soluble factors from the flow channel to a cellular compartment without disturbing or activating the cells with fluid shear. As an example, the manuscript demonstrates unbiased neutrophil migration against a microfluidic generated chemotatic gradient.


Snyder et al. (2013) High performance, low voltage electroosmotic pumps with molecularly thin nanoporous silicon membranes, PNAS 110:18425-30

Screen-Shot-2013-11-02-at-11.18.22-AMHere we reveal an unexpected property of pnc-Si membranes: their ability to serve as low voltage electroosmotic pumps. Electroosmosis with existing porous media require high (and potentially dangerous) voltages (~kV) while pnc-Si membranes pumps water through microfluidic channels at high rates (~ 10 ul/min) with battery-level voltages ~ 10V. The phenomenon is related to the appearance of a high electric field across the ultrathin membrane even at low voltages. Future optimization of electrode position closer to the membrane may reduce these voltage requirements even further. These results suggest the ability to integrate pnc-Si membranes as on-chip pumps in microfluidic devices.


Johnson et al. (2013) Ultrathin Silicon Membranes for Wearable Dialysis, Advances in Chronic Kidney Disease 20:508-515

This publication reports on our progress developing pnc-Si membranes for hemodialysis applications. We demonstrate the production of large format (1” x 1”) chips with high area chips with 300 times more active area than our original pnc-Si chips. This paper also demonstrates: 1) the successful integration of pnc-Si chips into microfluidic tangential flow devices; 2) the use of pnc-Si to separate middle weight proteins and urea from albumin; and 3) the ability to coat pnc-Si with PEG molecules to block both cell and protein binding.


Kavalenka, et al. (2012) Ballistic and non-ballistic gas flow through ultrathin nanopores, Nanotechnology 23: 145706.

This paper explores the physics of gas flow through pnc-Si membranes. The manuscript first establishes that the flow thorugh the membrane pores is molecular in nature. This means that the distance between gas molecules is large compared to the pore dimensions so that collisions between the gas molecules can be ignored and only collisions with the pore walls change affect gas molecule trajectories. The manuscript further establishes that because the membranes are molecularly thin, many molecules pass through pores without contacting the walls at all. This ballisitic component of the flow serves to further enhance the permeance of pnc-Si to gas molecules. As with liquid transport through the membranes, the permeance of gas through pnc-Si is shown to be many orders of magnitude higher than through conventional thick nanoporous membranes.


Kavalenka, et al. (2012) Chemical capacitive sensing using ultrathin flexible nanoporous electrodes, Sensors & Actuators B: Chemical, 162: 22-26

CScreen Shot 2014-01-08 at 9.30.09 PMapacitive chemical sensors feature a chemically-sensitive polymer material sandwiched between two electrode plates. In the presence of the chemical to be sensed, the polymer swells, the spacing between the electrode plates increases, and the capacitance goes up. As electrodes are typically impermeable to the chemical to be detected, chemical access to the polymer is often a challenge. We address this challenge by using gold-plated pnc-Si as a permeable electrode. The paper illustrates the reversible detection of hexane, toluene and acetone


Snyder, et al. (2011) A theoretical and experimental analysis of molecular separations by diffusion through ultrathin nanoporous membranes J. Mem. Sci. 369:119-129

This paper develops analytical and computational models of diffusion through membranes with known pore distributions and illustrates that ultrathin membranes, but not conventional thick membranes, are capable of high resolution separations by diffusion far from equilibrium. While the theory is predictive of experiments with small molecules, large molecules are more hindered than theory predicts. The difference between theory and experiments may be explained by protein adsorption that reduces pores sizes.


Ishimatsu et al. (2010) Ion-Selective Permeability of UltrathinNanopore silicon Membrane as Studied Using Nanofabricated Micropipet Probes. Analytical Chemistry 82:7127-7134

Shigeru Amemiya’s laboratory at the University of Pittsburgh used a highly senstitive electrochemical probe to measure small ion diffusion through pnc-Si without interference from stagnant layers. The paper demonstrates that pnc-Si membranes have a permeability to small monovalent ions (< 1/10th of pore size) that is predictable from membrane geometry alone. By contrast, multivalent and/or large (>30% of pore size) ions experience hindrance from steric and electrostatic effects.


Fang et al. (2010) Pore Size Control of Ultra-thin Silicon Membranes by Rapid Thermal Carbonization Nano Letters 10:3904-3908

This paper reports a new method for carbon deposition on silicon that results in the growth of graphene layers inside of the pores of pnc-Si. Very precise control (~ nm resolution) of pore sizes is obtainable by the technique. Interestingly the modified membranes do not exhibit enhanced water flow despite similarities to carbon nanotube membranes that are known to exhibit enhanced flow. The manuscript also demonstrates that carbonized membranes exhibit high resolution separations and high hydraulic permeabilities as seen with unmodified pnc-Si in Gaborski et al.


Gaborski et al. (2010) High performance separation of nanoparticles using ultrathin pnc-Si membranes ACS Nano 4:6973-6981

Gaborski2This paper reports the extraordinary hydraulic permeabilty of pnc-Si membranes and illustrates that water flow rates are consistent with the predictions of classic fluid theory. The manuscript also demonstrates the ability of pnc-Si to separate nanoparticles, including proteins, with better than 5 nm resolution and with little loss or dilution of the filtrate. The work establishes the capacity of pnc-Si membranes to serve as dead-end filters for the high resolution, low loss separation of nanomaterials.

 

 


Agrawal et al. (2010). Porous nanocrystalline silicon membranes as highly permeable and AgrawalPub10molecularly thin substrates for cell culture Biomaterials 31:5408-5417

In this work we measure cell growth, adhesion and viability on pnc-Si and compare the values to standard cell culture substrates. Results show that pnc-Si has no detrimental effects on cells and actually enhances growth rates for some cell types. The manuscript also demonstrates pnc-Si dissolves in biological media in a non-toxic fashion at rates that can be controlled through surface treatments. The work establishes the viability of pnc-Si as a new platform for cell culture and tissue engineering.

 


Kim et al. (2008) A Structure-Permeability Relationship of Ultrathin Nanoporous Silicon Membrane: A Comparison with the Nuclear Envelope J. Am. Chem. Soc. 130:4230-4231.

Collaborator Shigeru Amemiya at the University of Pittsburgh used scanning electrochemical microscopy to measure the permeability of pnc-Si membranes to small molecules. In this tehnique, a microelectrode is brought within 5 microns of the membrane. The electrode surface consumes a small molecule in solution via a redox reaction and this results in current flow. Because the molecule is quickly depleated near the electrode, the rate of diffusion through the membrane controls the steady current level. The paper demonstrates that pnc-Si membranes are so thin that the time for a small molecule to transport through a pores is negligible compared to the time it takes for the molecule to discover a pore opening on the surface.


Striemer, et al. (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. 2007 Nature. 445:749-753.

The seminal publication on the breakthrough membrane technology is still the best resource for understanding the fabrication of pnc-Si. The paper also demonstrates rapid molecular diffusion through the membrane and the ability to separate molecules based on their size. The supplement contains evidence of protein adhesion to the inside of pores and data showing that the rate of molecular diffusion depends on the charge of the diffusing species.