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Abstract
Here we show that the electric field inside an ultrathin membrane is weaker than conventional
theory would predict, and that the reduced field is predictive of measured electroosmotic flow
rates. Our theoretical analysis shows that the electric field inside a charged nanopore is affected
by end effects and dependent on the Dukhin number Du when the pore length-to-diameter aspect
ratio λ is less than 80 for Du≪ 1 or 300 for Du≫ 1. The electric field follows an unconventional
scaling law; it no longer scales uniformly with the thickness of membrane, but with the local
value of λ for each nanopore.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The magnitude of the electric field within porous, charged
media determines the flow rate of an electroosmotic pump
(EOP). Requiring no moving parts and causing no dispersion,
EOPs are often preferable to pressure-driven transport for
miniaturization efforts such as point-of-care diagnostics. The
growing demand for on-chip EOPs, however, faces an ardu-
ous challenge due to its high voltage requirements (typically
∼1 kV) [1]. Lowering the operating voltage necessitates a
more efficient design of the entire EOP including the transport
mechanism itself. Previous work has focused on redesigning
the electroosmosis-inducing media [2], using different elec-
trolytes [3], and reducing the spacing between electrodes
[4, 5]. We have recently shown that the use of a molecularly
thin (∼15 nm) silicon membrane in an EOP produces the
required field strengths at dramatically lower voltages
(∼10 V) [6]. EOPs produced with these highly permeable
membranes are expected to be useful for on-chip pumping
applications that do not have significant backpressure
requirements.

The electric field in lossy media like electrolyte solutions
depends on both the current density and the gradient of the
electric potential. Thus simply decreasing the membrane
thickness to achieve higher field strength will not be
straightforward if the local current density is also affected.

The conventional long pore (CLP) theory assumes that the
pore has very high pore length-to-diameter aspect ratio in
order to simplify its derivation [7]. This assumption under-
estimates the end effects inherited to the short nanopore. A
more generalized model is proposed by compensating for the
hydrodynamic end effects (HEE), which incur the extra
pressure load at either end of the pore [8–10]. Even though
the HEE model is valid for the nanopore with a lower aspect
ratio than the CLP model is, it is still not valid for the orifice-
like nanopore with its aspect ratio less than 1. The electric
field inside a short nanopore can be reduced by an access
resistance [11, 12], which is negligible compared to the pore
resistance for a long pore, but not for a short pore [13]. A
recent theoretical study also showed that the surface current
density at a discontinuous charged surface, like at the entrance
and exit of a charged nanopore, was greatly reduced
decreasing the tangential electric field near the discontinuity
[14]. It requires the transverse electric field to drive more ions
from/to the bulk to maintain the conservation of charge within
the nanopore. The tangential electric field regains the strength
of the applied field eventually deep inside the long pore
[14, 15]. However, for short nanopores this tangential field
remains weakened. In this work we analytically combine the
effects of the access resistance—discontinuity-induced tan-
gential field weakening—and HEE with numerical simulation
and experimental verification of the comprehensive model.
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2. Methods

2.1. Experiment protocol

The electric field in a single orifice-like nanopore has not been
well examined experimentally and its behavior in a thin
porous membrane containing a multiple nanopores is unex-
plored. Our work focuses on investigating the electric field
behavior near short pores for the purpose of understanding the
ability of nanoporous ultrathin membranes to support elec-
troosmosis (EO) [6]. In the experimental investigation, the
electric field strength is deduced from the EO flow rates
induced by a 15 nm thick porous nanocrystalline silicon (pnc-
Si) membrane [16] with a mean pore length-to-diameter
aspect ratio of 0.7 under various potentiostatic conditions (see
appendix (A) for the detailed experiment protocol). The
measured flow rates are then compared with those predicted
by the CLP transport theory and more advanced models that
include end effects for short pores. In addition to the access
resistance which affects the electric field in pores, our models
include the HEE [8–10] to account for an extra pressure drop
at the entrance and exit of the short pores. We find that the
inclusion of both electrical and hydrodynamic short-pore
effects (SPE) is essential to predicting EO rates through
ultrathin membranes.

2.2. Numerical simulation

The electric field inside the orifice-like nanopores of the
ultrathin membrane is suspected to be less than the conven-
tional calculation. The finite element simulations clarify this
suspicion and elucidate the physics underlying the attenuated
field strength. This numerical study uses electrokinetic theory
to examine the concentration of ions and how the electric field
near the membrane and within the nanopore is affected by the
conductivity of the solution inside the nanopore. The con-
centration profiles of ions are prescribed by the charged sur-
face of pore wall and membrane, and can be determined by
solving Poisson–Nernst–Planck (PNP) equations. Over the
charged surface, cations and anions distribute differently
under the influence of diffusion from the gradient of their
concentration ±c , migration under the gradient of the intrinsic
potential ψ, and convection due to the velocity profile v of
solvent according to the Nernst–Planck (NP) equation,

ψ= − − +± ± ± ± ± ± ± ( )D c z D RT Fc cj v , describing their
ionic flux ±j where ±D and ±z denote their diffusion coeffi-
cients and valence numbers, and R, T, and F stand for the
universal gas constant, absolute temperature, and Faraday’s
constant, respectively. Influenced by the electrostatics, the
permittivity ε of solvent and the volume charge density, ρ=F
(z+c+ + z−c−), of ions in the electrolyte solution dictates the
intrinsic potential ψ as described by the Poisson equation,

ε ψ ρ⋅ = − ( ) . Unlike the intrinsic potential, the applied
potential ϕ produces the electric field, ϕ= −E , corre-
sponding to the current density, J= σE, with the conductivity,
σ=Λ+c+ +Λ−c−, of the profiles obtained from solving PNP
equations, where Λ± represent the molar conductivities. It is
worth noting that the convective flux of ions due to the

creeping flow is negligible and is omitted from the simula-
tions to reduce the computational time and complexity.

Figure 1 illustrates the domain, which is axisymmetric
along the boundary AH, used in the simulations and all the
respective boundary conditions. The electrolyte is aqueous
NaCl with the bulk concentration of cb, which is held constant
at boundaries AB and GH to which the intrinsic potential ψ is
referred. Also along the boundaries AB and GH, the poten-
tials of –Vapp/2 and Vapp/2 are applied. The membrane is
defined by the boundaries CD and EF with its nanopore wall
along the boundary DE; all contain the negative surface
charge density of ρs with no flux and no current flowing
through. The boundaries BC and FG representing the
extending reservoir are assumed to have no flux, no current,
and no electric field in the direction perpendicular to these
boundaries.

3. Results and discussion

3.1. SPE on EO flow rates

It was found that the measured flow rates of EO induced by
the 15 nm thick pnc-Si membrane using 1 mM NaCl aqueous
solution with neutral pH were uncharacteristically lower than
the conventionally predicted by CLP and HEE transport
models as shown in figure 2.

The conventional calculation of the electric field across
the membrane is found by dividing the Ohmic potential drop

Figure 1. The schematic shows the axisymmetric domain and
boundary conditions used in the numerical study of the electric field
E inside a single orifice-like nanopore with the pore length lp and
radius rp. The voltage of Vapp is applied across the boundaries AB
and GH. The membrane and its single nanopore are defined by the
boundaries CD, DE, and EF with the negative surface charge density
of ρs. The boundaries BC and FG contain no surface charge. The
intrinsic potential ψ caused by the charged surface is defined with
respect to that on the boundaries AB and GH, assumed to have a
constant bulk concentration cb. All the boundaries except AB, GH,
and AH are assumed to have no ionic flux ±j and no current density

J. The symbol n denotes a unit vector normal to a given boundary
and pointing into the domain.
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[17] across the membrane by the membrane thickness [18].
The potential drop across the membrane in turn was found by
multiplying the current measured between electrodes with
total membrane resistance which includes the access resis-
tance of nanopores. The total resistance of each nanopore is
predicted from the bulk solution conductivity and surface
conductivity of charged walls of membrane nanopores
according to the well-established theory [13]. Taking the
pore-size distribution of the membrane into account yields the
total resistance of the membrane [6].

3.2. Numerical simulations of concentration profiles and
electric field within a single nanopore

The simulations reveal that the electric field inside the pore is
impacted by both Dukhin number, Du = (σs/σb)/rp– the ratio
of the surface conductivity σs to the bulk conductivity σb
divided by the pore radius [19]—and pore aspect ratio, λ= lp/
2rp, (figure 3). This phenomenon occurs because the electric
field is sensitive to the conductivity of medium; the ability of
ions to diffuse from the bulk to the interior of short pores
impacts the conductivity of the pore interior. This effect is
more pronounced at higher bulk ion concentrations as seen in
the first and second rows of figure 3, than it is at low bulk
concentrations (the third row of figure 3).

Dukhin number indicates the ratio of the electric double
layer (EDL) thickness to the pore radius [13]. When Du is
much smaller than unity, usually at high bulk concentrations
(the first row of figure 3), the majority of the nanopore is filled
with the bulk solution and the electrolyte is nearly uniform
across the orifice-like and both long nanopores. At moderate
Du (the second row of figure 3), the EDL extends more
prominently into the mid-pore region than in the regions near
the nanopore entrance and exit, which are in direct contact

with the bulk. The conductivity of the mid-pore region is
therefore diverse from that of pore-end regions. At high Du
(the third row of figure 3), the EDL becomes overlapped and
screens the electrolyte inside the charged orifice-like and long
nanopores from the bulk; the conductivity in the regions near
the nanopore entrance and exit is influenced by that in the
mid-pore region instead. Therefore, the conductivity across
the membrane varies slightly from that in the mid-pore region.

Regardless of the Dukhin number, the axial component
of the electric field is significantly weaker along the centreline
of an orifice-like nanopore than near the pore walls. In con-
trast, the axial component of the electric field is nearly uni-
form across the pore cross-section for long pores (figure 3).
The first column of figure 3 illustrates how converging and
diverging field lines at the pore entrance and exit affect the
field lines in the mid-pore region to give diminished field
strength at the pore centreline. Therefore, the average electric
field over the cross-sectional area of a short pore will be
significantly lower than the conventional estimate assuming a
uniform field.

3.3. SPE analytical model for field strength within a nanopore

In addition to our computational model, we have developed
and solved an analytical model describing the impact of pore
geometry on field strength. We begin by neglecting SPE, as in
the CLP [7] and charge regulation [20–24] theories. With this
assumption, the transport of solvent and ions in a single
charged nanopore can be derived by the one-dimensional
Navier–Stokes (NS) and NP equations, respectively. Fluid
and ion transport are described in terms of the volumetric flow
rate Qi of the solvent, ionic flux Ni, and ionic current Ii as a
function of the gradients of hydrostatic pressure Pi and
osmotic pressure πi in addition to electric potential ϕi being
applied externally. Only the axial components of NS
equations are needed to prescribe the velocity profile vi of
solvent, which is driven by Coulomb forces on the ions in the
diffuse layer. The transport equation for the flow rate is then
found with ∫π=Q v r r2 di

r
i0

i . It is important to note that the
hydrostatic pressure term in the NS equations is modeled as a
sum of the partial pressure of solvent and the osmotic pressure
of ions [7]. Similarly, the NP equations for the flux density of
cation j+ and anion j− in the binary symmetric electrolyte
solution, with valence number z+ =−z−= z, give rise to
transport equations for the ionic flux ∫π= ++ −( )N j j r r2 di

r

0

i

and the ionic current ∫π= −+ −( )I zF j j r r2 di
r

0

i . All three
CLP transport equations are expressed in matrix form as

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

π
ϕ

=
Δ
Δ
Δ

Q
N
I

l

K K K
K K K
K K K

P
1

, (1)
i

i

i

i

i

i
p

11 12 13

21 22 23

31 32 33

where the K coefficients are defined in appendix (B). Notably,
the coefficient K33 characterizes the conductivity of a long,
charged nanopore emphasizing the contribution from the
convection K33,conv, (B.10), in addition to those from the
concentration profiles, π Λ + Λ+ + − −( )r c c¯ ¯i

2 , where Λ± denotes

Figure 2. Accounting for short-pore effects results in good
agreement between theoretical predictions of EO flow rates and
experiments. Each measured flow rate is plotted with respect to the
electric field across the membrane, which is estimated from the
Ohmic potential drop divided by the membrane thickness. The
symbols CLP, HEE, and SPE represent the predicted results from the
conventional long pore theory, additionally with hydrodynamic end
effects compensated, and with short-pore effects compensated (this
work), respectively.
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the molar conductivity and ∫ ∫=± ±c c r r r r¯ d d
r r

0 0

i i repre-
sents the average concentration over the pore cross-sec-
tional area.

To advance this model to short pores, the influence of the
electric field at either end of the nanopore on the field in the
mid-pore region is taken into account, as observed in figure 3.
Considering the impact of entrance effects on the Ohmic
potential first, we consider the equivalent RC parallel circuit
of the porous membrane. The pore resistance Rp,i in series
with access resistance Ra,i at either end constitutes the total
resistance of each nanopore. The potential drop across the
capacitor-like membrane Δϕm is equal to the sum of Ohmic
potential drop across the pore Δϕi=Rp,i Ii and those con-
tributed by both access resistances, 2 Ra,i Ii, where Ii is the
current flowing in the ith nanopore. For a charged nanopore
of radius ri, the access resistance is related to the bulk con-
ductivity σb and surface conductivity σs,i of the pore wall via
Dukhin number, Dui= (σs/σb)/ri, [19] as Ra,

i= [2riσb(2 +Dui)]
−1 [13]. Accordingly, the potential differ-

ence across each nanopore can be estimated as

ϕ ϕ
σ

Δ = Δ −
+( )r Du

I
1

2
. (2)i

i i
im

b

HEE originate from the converging and diverging
streamlines of fluid passing through the sudden contraction
and expansion at the entrance and exit of the pore. Like the

extra potential drop associated with Ohmic resistances, these
fluidic transitions result in additional extra pressure loss
across the membrane. Assuming low Reynolds number flow,
the pressure loss δPp,i can be approximated as the pressure
drop across an orifice of zero thickness [8, 9], which is given
in terms of the fluid viscosity η, pore radius ri, and volumetric
flow rate Qi as δ η= ( )P r Q2 3i i ip,

3 [25]. The total pressure
differential ΔPm across the membrane is given by the suc-
cessive pressure drops at the entrance δPp,i, across the pore
ΔPi, and at the exit δPp,i so that

ηΔ = Δ −P P
r

Q
3

. (3)i
i

im 3

Incorporating the SPE described in (2) and (3) into the
CLP transport equation (1) gives a set of generalized
equations (SPE) describing fluid and ion transport in pores
with low aspect ratio λ, while using (3) alone gives HEE
transport equations. Expressed in the matrix form similar to
(1), the SPE transport equations are

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

π
ϕ

=
Δ
Δ
Δ

Q
N
I

l

M M M
M M M
M M M

P
1

(4)
i

i

i
p

11 12 13

21 22 23

31 32 33

m

m

m

with the omission of the end effects on the osmotic pressure,
Δπi≈Δπm, for the weakly charged surface of silicon (see

Figure 3. Electric field in a charged nanopore is impacted by short-pore effects and the uniformity of electrolyte solution inside the pore.
COMSOL simulations for an axisymmetric nanopore, showing a close-up, half model with its wall and centreline, indicate that converging and
diverging vectors of electric field at pore entrance and exit affect the field lines in the central region of an orifice-like nanopore (λ<1) more than
the long counterparts (λ⩾ 1). Representing their axial component, a shorter arrow indicates a weaker field at the centreline than near the wall of
the orifice-like nanopore while uniform for the long ones. In the simulations, the orifice-like and both long nanopores have the same pore radius
of 10.55 nm—the mean pore radius of the 15 nm thick pnc-Si membrane used in the experiment—with the pore lengths of 15 nm, 150 nm, and
1500 nm, respectively. The color gradient signifies the concentration profile of counterions relative to bulk concentration, demonstrating the
impact of the profiles near the entrance and exit of nanopore on the nanopore conductivity. Such impact can be characterized by Dukhin number,
Du: the ratio of the electric double layer (EDL) thickness to the pore radius. (First row) for the high bulk concentration of 100 mM and low
Dukhin number of Du=0.23, the nanopore conductivity is governed by the conductivity of bulk solution; (second row) for the moderate
concentration of 1 mM and Du=4.58, with EDL starting to envelope the membrane, the mid-pore region becomes more conductive than the
bulk, but the regions near the entrance and exit still have the influence of bulk solution on their conductivity; (third row) for the low
concentration of 0.1 mM and high Dukhin number of Du=18, with EDL strongly enveloping the entire membrane, the regions near the entrance
and exit are screened from the bulk and their conductivity is governed by the conductivity of the mid-pore region.
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appendix (C) for the definition of M coefficients). Likewise,
the coefficient M33 characterizes the conductivity of a short,
charged nanopore. As an illustration of the utility of (4),
consider the generalized transport equation for the ionic
current Ii in the absence of the applied hydrostatic and
osmotic pressure differentials. In this case only the electric
field across the membrane governs the flow of ionic current in
each nanopore and (4) reduces to

ϕ
=

Δ
I M

l
. (5)i 33

m

p

Given the pore tortuosity of one without loss of generality, the
influence of this predicted current on the electric field
Ei=Δϕi/lp inside each nanopore indicates a possible reduction
from the electric field Em=Δϕm/lp across the membrane
according to (2) as

σ
= −

+( )
E

E

M

l r Du
1

2
. (6)i

i im

33

p b

Figure 4 examines the dependence of the normalized
electric field Ei/Em on the pore length-to-diameter aspect ratio
λ and Dukhin number Du as predicted by the SPE model. The
results illustrate how the effective electric field is reduced as λ
decreases or the EDL thickness increases (figure 4(a)). In
either case, end effects have a greater influence on the central
regions of the pore. The actual physical dimensions of a pore
are not a significant determinant of the field strength. As
shown in figure 4(b), the pore aspect ratio and Dukhin
number nearly collapse the behavior of several curves with
λ= 1 despite physical dimensions that range from nm to μm.
A slight difference in the electric field for different physical
dimensions arises from the increasing conductivity of elec-
trolyte caused by the electroosmosis-induced convection K33,

conv; the larger pore tends to have higher convection because
of a greater hydrodynamic permeability. Note that a deviation
as high as 70% from the conventional estimate Em is possible
for the 1-to-1 aspect ratio at high Dukhin number.

The reduced electric field (6) leads to simpler expressions
under a number of limiting conditions. Approximating the
total conductivity of a charged nanopore as a sum of the
contributions from the bulk and its charged surface [19] leads
to

σΛ + Λ ≈ ++ + − − ( )c c Du¯ ¯ 1 2 . (7)ib

Using this approximation in (6) results in a compact form of
the normalized electric field as

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

π σ π
λ

= +
+ +

+

−( )E

E

Du K r

Du
1

1 2

2 2
(8)i i i

i im

33,conv
2

b
1

(see appendix (D) for the derivation). Since the K33,conv term
in (B.10) always possesses a nonnegative value, the

normalized electric field in (8) is then bounded by

⎡
⎣⎢

⎤
⎦⎥

π
λ

⩽ +
+
+

−
E

E

Du

Du
1

1 2

2 2
. (9)i i

i im

1

From the inequality in (9), the threshold values of the
pore aspect ratio λi can be given as a function of the nor-
malized electric field and Dukhin number as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟λ π⩾

−
+
+

E E

E E

Du

Du2 1

1 2

2
. (10)i

i

i

i

i

m

m

For the normalized field of at least 0.99, λi must be at least
49.5π (1 + 2Dui)/(2 +Dui), which is about 78 for Dui≪ 1 or
311 for Dui≫ 1.

Figure 4. According to the SPE model for a single nanopore, the
electric field Ei inside the nanopore normalized with its conventional
estimate Em across the membrane is a function of both the pore
length-to-diameter aspect ratio λ and the Dukhin number Du. (a) If λ
is changed, the normalized electric field is higher for the nanopore
with highest value of λ; (b) in case of a fixed value of λ = 1 and
multiple pore sizes, all characteristic curves are closely similar; a
slight difference arises from the enhanced conductivity contributed
by electroosmosis-induced convection, which more prominent for
the larger pore diameter. Note that all characteristic curves saturate
when the EDL is very thin or strongly overlapped.
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3.4. Electric field strength and EO flow rate for ultrathin
membranes with distribution of pore sizes

For an ultrathin membrane with a distribution of pore sizes,
the local electric field depends distinctively on the aspect ratio
of each nanopore. Figure 5 examines the impact of a pore
distribution on electric field over the membrane cross-section.
Assuming a log-normal probability density function (pdf) for
15 nm, 150 nm, and 1500 nm thick membranes, the figure
shows electric field reduction as a function of pore length-to-
diameter aspect ratios. As the membrane becomes thicker, the
effective electric field becomes more uniform, and the pore-
size distribution is less of a concern.

The distribution of effective electric field in ultrathin
membranes has a direct impact on the overall electroosmosis
induced. This impact can be predicted by the ensemble SPE
transport model that takes the pore-size distribution into
account. To derive this result we modify the standard prob-
ability density function fR(r) with a probability density
function f r( )R

* that describes the realistic distribution of pore
sizes with a finite range and maximum pore radius rmax. This
modification involves truncation and rescaling such that

∫=f r f r f r r( ) ( ) ( )d
r

R
*

R 0 R
max satisfies the normalization

condition ∫ =f r r( )d 1
r

0 R
*max , while maintaining the same

mean ∫=r f r r r¯ ( ) d
r

0 R
*max and standard deviation

∫= −r f r r r r( )( ¯) d
r

std 0 R
* 2max of the original distribution.

Incorporating this pore-size distribution into the pore-specific
transport equation (4) results in the ensemble transport

equations,

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

π
ϕ

=
Δ
Δ
Δ

Σ

Σ

Σ

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

Q
N
I

l

M M M
M M M
M M M

P
1

(11)
p

11 12 13

21 22 23

31 32 33

m

m

m

for the total flow rate QΣ, total solute flux NΣ, and total current
IΣ where ∫=Σ ( ) ( )M l n f r M r l r( ) , djk

r
jkp 0 0 R

*
p

max for j, k= 1,

2, 3 with the total number of pores n0 derived in terms of the
porosity φ and area Am of the membrane as

∫
φ

π
=n

A

f r r r( ) d
. (12)r0

m

0
R
* 2

max

In the absence of the externally applied pressure
and concentration differences across the membrane, the
electric field Em can be deduced from the flow rate QΣ,EO
of the purely EO transport via the coefficient MΣ13 from (11)
as

∫=Σ ( )
Q n f r K r

E

Y r l
r( ) ( )

,
d , (13)

r

,EO 0
0

R
* 13

m

p

max

where Y= 1 + (3η/lpr
3) K11 + [K33 + (3η/lpr

3)(K11K33−K13

K31)]/lprσb(2 +Du) for the ensemble SPE model. In case of
the derivations based on the CLP and HEE transport models,
the denominator in the integral of (13) has Y= 1 and
Y = 1 + (3η/lpr

3) K11, respectively. The denominator Y indi-
cates the reduction in EO flow rate due to end effects. Note
that the theoretical pore-size distribution governing all these
predictions was based on the log-normal probability density
function [26], which was truncated to represent the finite,
maximum pore size as described previously. The EO flow
rates predicted by (13) for the CLP, HEE, and SPE models are
compared with the experimentally measured EO flow rates
and were shown in figure 2.

4. Conclusions

The SPE model is more accurate than CLP and HEE models
in predicting EO induced flow rates in ultrathin membranes.
The model improvement arises from the proper estimation of
the electric fields inside the membrane’s orifice-like nano-
pores. Use of the standard electric field calculation
Em=Δϕm/lp commonly associated with EO data and CLP
theory underestimates the total membrane resistance. The
underestimate originates from the fact that CLP theory
neglects the pore access resistance, which in the case of
ultrathin membranes becomes comparable to the resistance
of electrolyte inside the nanopore itself. Both types of
resistance coexist, contribute to the total resistance across
membrane, and result in the Ohmic potential Δϕm. The
agreement between the SPE-based prediction and experi-
mental measurement substantiates the novel scaling laws
that the electric field is scaled not only with Dukhin number
as described by the electrokinetic theory, but also with the
pore length-to-diameter aspect ratio. This finding will

Figure 5. Localized electric fields exhibit a distribution corre-
sponding to the pore size statistic of nanoporous membranes. For
illustration purposes, assume a log-normal pore-size distribution for
the 15 nm, 150 nm, and 1500 nm thick membranes. A majority of
nanopores of thinner membrane have very low normalized electric
fields; however, increased as the mean pore aspect ratio increases.
The pore-size distribution is very important for models of ultrathin
membranes, but less of a concern for those of thick membranes—as
the probability density function (pdf) shifts to the right.
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contribute significantly to the proper design of lab-on-a-chip
systems that aim to capitalize on the low-voltage electro-
osmosis from the ultrathin membranes.
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Appendix A. Experiment protocol

We measured electroosmosis through pnc-Si membranes
(SiMPore, West Henrietta, NY, USA) that had a thickness of
15 nm and total area of 0.8 mm2 with the porosity of 8.1%,
mean pore radius of 10.55 nm, maximum pore radius of
18.1 nm, and standard deviation of 4.3 nm. The aqueous
electrolyte solution was 1 mM NaCl and degased prior to use.
The test device was custom-made to hold a 7 mm circular
silicon membrane chip and allow the insertion of both elec-
trodes into its chambers [6]. Both electrodes were made of
pure silver wire coiled and coated with AGCL-675C Ag/
AgCl ink (Conductive Compounds, Hudson, NH, USA). The
ink was dried in the oven at 80 °C for an hour to remove all
the solvents. A foot-long Teflon 1548 tubing (Upchurch
Scientific, Oak Harbor, WA, USA) with an inner diameter of
500 μm was attached to the each port of the test device. All
the parts were assembled under the electrolyte solution after
degasing. The spacing between each electrode and the
membrane was about 2 mm. Each tube was half filled with
electrolyte. The assembled test device was padded dry and left
stationary for 12 hours to allow the membrane to soak in the
electrolyte solution. Before the measurement, the membrane
pores were rinsed by pressure-driven flow with the flow rate
about 1–2 μLmin–1 at 0.3–0.5 psi of the applied pressure for
at least two hours. Comparing between the results from the
repeated measurements with and without pore rinsing, it was
found that after pore rinsing, the measured flow rates were
consistent and repeatable for a given membrane. The flow
velocity of liquid was measured by tracing the motion of both
menisci, which were recorded under a microscope equipped
with a CCD camera (Motic, British Columbia, Canada). The
velocity was then multiplied by the cross-sectional area of the
tube to obtain the volumetric flow rate. The DC voltage,
ranging from 0.25 V to 1.5 V, was applied to the electrodes
via an Agilent 33220A arbitrary waveform generator (Agi-
lent, Santa Clara, CA, USA). This waveform generator served
as an adjustable constant voltage source. The electric current
flow across the membrane was monitored and recorded by an
Agilent 34410A digital multimeter (Agilent, Santa Clara,
CA, USA).

Appendix B. K coefficients for the conventional
transport equations

K coefficients for the CLP transport equation (1) characterize
three important lump parameters that describe the electro-
kinetic transports of liquid and ions in a single, infinitely long
pore of radius ri [7]. The coefficients K11, K12, and K13

characterize the flow rate Qi of liquid solvent transport driven
by the gradients of hydrostatic pressure, osmotic pressure, and
applied potential, respectively. Derived by integrating the
flow velocity profile over the pore cross-sectional area, these
three coefficients are given as
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The second set of K coefficients includes K21, K22, and
K23. These three coefficients characterize the ionic flux Ni

contributed by every cation and anion that involve in the ionic
transport inside the pore. Obtained by integrating the sum of
their flux densities over the pore cross-sectional area, these
three coefficients are
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The last three coefficients K31, K32, and K33 characterize
the ionic current Ii flowing through the pore and signify the
contributions from the hydrostatic pressure gradient, osmotic
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pressure gradient, and electric field, respectively. Derived by
integrating the net current density over the pore cross-sec-
tional area, they are given as
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Note that K33 represents the conductivity of electrolyte
solution inside a charged pore where K33,conv and K33,em

denote the contributions from the convection and electro-
migration, respectively.

Appendix C. M coefficients for the generalized
transport equations

M coefficients for the generalized transport equations based
on the model of SPE (4) describes the electrokinetic trans-
ports of liquid and ions in a single pore of radius ri and finite
length lp. Deriving from the CLP transport equation (1),
taking SPE given by (2) and (3) into account transforms the
pore-specific to membrane-oriented parameters as
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Note the omission of the end effects on the osmotic
pressure, Δπi≈Δπm, for the weakly charged surface of silicon.
Substituting this transformation back into (1) and rearranging
terms yield the generalized transport equation (4) with the M

coefficients taking the form of

⎛

⎝

⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦

⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟

η

σ
= +

+

−

−

−

( )
l l

r

r Du

M

I K K
1 1

3 0 0
0 0 0

0 0 2

, (C.2)
i

i i
p p

3

b
1

1

where I, M, and K represent an identity matrix, the matrix of
M coefficients in (4), and the matrix of K coefficients in (1)
and listed in appendix B, respectively.

Appendix D. Derivation of the approximated
normalized electric field

Substituting coefficient M33 in (6), the normalized electric
field is given in terms of K coefficients defined in
appendix (B) as
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Since the conductivity contributed by the concentration pro-
files inside a nanopore is usually much larger than that con-
tributed by the hydrodynamic convection, the normalized
field can be approximated as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥σ

≈ +
+

−

( )
E

E

K

l r Du
1

2
. (D.2)i

i im

33

p b

1

From (B.9) and (B.11), the coefficient K33 can be given as
π= Λ + Λ ++ + − −( )K r c c K¯ ¯i33

2
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concentrations of cation and anion is defined as
∫ ∫=± ±c c r r r r¯ d d
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i i with their molar conductivities,

Λ =± ±F D RT2 . Using the approximated conductivity of a
charged nanopore (7) the normalized electric field has a
compact form as
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where λi= lp/2ri represents the pore length-to-diameter aspect
ratio.
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