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A B S T R A C T

Silicon nanomembranes are thin nanoporous films that are frequently used as separation tools for nanopar-
ticles and biological materials. In such applications, increased differential pressure across the nanomem-
branes directly increases process throughput. Therefore, a predictive tool governing the macroscale
failure of the porous thin films is fundamentally important in application areas where high differen-
tial pressures are desired. Although the deflections and stresses of the nanomembranes can be reliably
predicted, a straightforward and prognostic failure model has yet to be outlined. In this publication, a
brittle macroscale failure model is established and validated with experimental results. Theoretical agree-
ment with experiments within 10% accuracy offers reliable failure predictions for square membrane
dimensions from 60 lm to 1.5 mm through over 100 trials. The methodology relies on an effective
fracture toughness from previously published work that is incorporated through Griffith’s law. These
developments will be useful in the selection of nanomembranes for particular applications and will help
guide the design of materials with improved strength. The model should also prove useful for high-
volume, in-line processing and inspection of nanomembranes as their role becomes more prominent in
industry.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The increased ductility of nanocrystalline ceramics at room tem-
perature [1] has enabled a variety of promising technologies. Specif-
ically, thin nanocrystalline membranes have the ability to withstand
relatively high differential pressures without undergoing perma-
nent mechanical yield [2]. Porous nanocrystalline silicon (pnc-Si) and
porous SiNx (nanoporous nitride or NPN) membranes have leveraged
their strength to demonstrate size-selective protein separations [3],
high-permeability cell culture and tissue engineering [4,5], low-
voltage electroosmosis [6], chemical capacitive sensing [7], and
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a potential replacement for current hemodialysis devices with
increased performance and compact size [8–10]. In most filtration
applications, increased differential pressure across the nanomem-
branes decreases process time. For this reason, the establishment of
a predictive failure model is essential to produce stronger and more
effective nanomembranes. Currently, the fabrication and control of
pore properties is understood and documented [8,11,12], stresses
and deflections of the membranes are predictable [13–15]; however,
a straightforward and conclusive failure mechanism has yet to be
realized.

The most promising failure criteria have been published by
Kovács, et al. [16,17]. Their work accurately predicts the failure of
ceramic membranes with micrometer-size pores with the incorpora-
tion of finite element analysis (FEA) and a required calibration factor
to match experiments. Although the theory is reliable, it assumes
that the failure of the membranes occurs when the maximum prin-
ciple stress in the material is attained. Indeed, this brittle failure
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mechanism can be considered valid; however, more common thin
film failure analyses [2,18,19] rely on the use of Griffith’s law [20,21]
to elucidate a fracture toughness of the material without the need for
FEA.

In this publication, we assimilate the tenable findings from
Kovács, et al. [16,17], Matoy, et al. [18], Di Maio and Roberts [19], and
Yang, et al. [22] to predict the failure of thin and porous silicon-based
membranes. An imperative finding of the finite element simulations
performed by Kovács and the analytical explorations performed by
Yang is that thin membranes produce maximum stress concentra-
tions at the middle of the edges due to a large bending moment.
Since considerable ambiguities in fracture toughness exist depend-
ing on the experimental setup [23], it is preferable to use values
measured in a similar stress state to our current application. Conve-
niently, Matoy and Di Maio have published fracture toughness values
of SiNx and monolithic silicon in a beam bending scenario. In this
work, those fracture toughness values can be reliably applied to our
predictive model for NPN and pnc-Si nanomembranes, respectively,
since these materials fracture under a quasi-bending state near the
middle of the edges.

The membranes investigated in this work are brittle; thus, their
strength is governed by their largest flaw [22,24]. Fig. 1 shows a
scanning electron microscope image of a square membrane after
fracture. Upon inspection of Fig. 1a, it can be inferred that the largest
flaw in these membranes is probably the pores. The fracture of the
thin films is most likely initiated at these defects near the edges
of the boundary where stresses are the largest [15-17,22]. Further-
more, in Fig. 1b, the fact that the membrane failed at all edges
simultaneously is also consistent with the role of bending stresses at
membrane edges causing failure. Our theory to predict these effects
combines the principles of Timoshenko [13] with the appropriate
weighting [15] to accurately predict stresses within the material
under a bulge test scenario [14]. Under this criteria our hypothesis is
that the pores in the material act as defects which can be related to
failure using Griffith’s Law [20,21].

In comparison to the work by Kovács, et al., our approach does
not require FEA for accuracy and can be used in a straightforward
fashion. We note explicitly that this model is not meant to measure
the fracture toughness of the thin films. Since it is well-known that
fracture toughness can typically vary within 20%, we slightly cali-
brate the values published by Matoy, et al. [18], and Di Maio and
Roberts [19] within this bound for high accuracy.

2. Construction of membranes

Varying construction processes can yield different structural
properties of the membranes. Methods for fabrication and control of
pore properties in pnc-Si and NPN membranes have been published
with extensive detail [8,12]. In this section, we briefly outline fabri-
cation methods for completeness and accessible comparisons to our
work. Fig. 2 provides the process flow used to construct both types
of nanoporous membranes used for this research.

2.1. Porous nanocrystalline silicon (pnc-Si)

The approach to fabricate pnc-Si membranes utilizes silicon
deposition techniques combined with etching processes. Directly
patterning the pores is exceedingly time consuming and not fit to
achieve industrial-scale throughput. Instead, the pores are sponta-
neously formed during a rapid thermal anneal whereby nanocrystals
nucleate from amorphous silicon.

The first step in the process involves growing a ∼500 nm-thick
layer of SiO2 on both sides of a silicon substrate. The back side of
the wafer is then patterned using photolithography to form an etch
mask and the front oxide layer is removed and replaced with a three
layer stack using RF magnetron sputtering. The pnc-Si membranes
used in this research are 20 nm thick; thus, the stack is composed of
20 nm SiO2/ 20 nm amorphous Si/ 20 nm SiO2. This deposition recipe
is well characterized, and can deposit films with ±1% thickness
accuracy and surface roughnesses under 0.5 nm [8].

To form the pores in pnc-Si, the wafer is briefly exposed to a
high temperature (800–1100◦C for 30 s) in a rapid thermal process-
ing chamber. The backside of the wafer is then etched using EDP
(ethylenediamine pyrocatechol) which removes material along the
(111) plane of the Si substrate. As a final step, the wafer is exposed
to a buffered oxide etchant to remove oxide layers – thereby expos-
ing the freestanding pnc-Si membrane. The membranes then tend to
grow a native oxide layer that stabilizes at ∼ 1.5 nm over the course
of one week after being exposed to ambient air.

2.2. Nanoporous nitride (NPN)

The process used to create freestanding pnc-Si membranes is
adapted for use as a mask in the fabrication of NPN [12]. The first step
involves forming a 40 nm pnc-Si layer using a 50 nm SiNx/ 40 nm

Fig. 1. Scanning electron microscope images of the porous membranes. (a) A close-up image of the pores that promote failure. (b) Stress concentrations from large bending
moments at the edges of the square membranes produce sudden and catastrophic failure.
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Fig. 2. Process flows for construction of porous membranes made of (a) porous nanocrystalline silicon (pnc-Si) and (b) nanoporous nitride (NPN). Step-by-step processes are
outlined in the text.

amorphous Si/ 20 nm SiO2 stack on the front side of the wafer. The
backside is also coated with SiNx. The thickness of the amorphous
silicon layer is maximized to enable a longer etch through the SiNx

after pores form in pnc-Si. To create pores, the wafer is exposed to a
rapid thermal process (RTP in Fig. 2) as outlined previously.

The backside SiNx layer is patterned to create an etch mask
and the frontside is exposed to a reactive ion etching (RIE) pro-
cess which transfers the pnc-Si pores to the SiNx layer. Next, using
tetraethyl orthosilicate (TEOS) as a precursor gas, a 100 nm SiO2 layer
is deposited on the front surface using plasma-enhanced chemical
vapor deposition (PECVD). The SiO2 layer protects the NPN during
the bulk silicon etch from the backside of the wafer. The final step
removes the protective SiO2 layer to expose the freestanding NPN
membrane.

A variety of pnc-Si and NPN nanomembranes were constructed
from both materials in square geometries ranging from 0.06 mm to
1.75 mm on a side. They were then subjected to a bulge test [14]
until failure occurred [12]. Our objective was to develop a predictive
theory that anticipated the pressures at which the nanomembranes
failed.

3. Failure mechanism

In 1921, Alan Griffith published a seminal paper [20] relating the
strength of brittle materials to the sizes of their inherent defects and
flaws rather than the intrinsic strength of their atomic bonds. Since
then a general description of his findings, known as Griffith’s Law,
has become a cornerstone of fracture mechanics [21]:

KIc = stotalY
√
pa. (3.1)

Eq. (3.1) relates the fracture toughness of a material, KIc, to the inter-
nal stress, s total (in our case a combination of bending, tension and
residual stresses), a dimensionless crack geometry factor, Y, and half
the width of the defect or crack, a. Our hypothesis in this work is
that the introduction of pores into an ultrathin membrane geome-
try drives failure of the membranes because the pores act as defects.
The results will rely on an effective fracture toughness, Keff

Ic , rather

than KIc for two main reasons. First, the defect size, 2a, is an average
pore size without a consistent geometry (see Fig. 1a), and second,
we define the crack geometry factor, Y as 1.1 for usability of the
model [25]. More accurate fracture toughness measurements require
precise insights and measurements of the exact value of Y based on
defect geometry [18,19].

The majority of the following discussion is focused on realizing
a critical stress, s total, within the material to use in Griffith’s Law.
According to Timoshenko [13], the full three-dimensional expression
of this problem involves the simultaneous solution of two nonlinear
differential equations. The general solution to these equations is
unknown. Therefore, approximations need to be made to arrive
at s total. Two common approximations suggested by Timoshenko
involve (1) considering only the two-dimensional case in which the
nonlinear governing equations are greatly simplified and can be
solved or (2) assuming the plate has no resistance to bending. The
former can be assumed in the case of very thin plates (nanomem-
branes) which have deflections many times larger than their thick-
ness. However, due to the fact that the membrane failure has been
observed to occur in a quasi-bending state at the edges [13,15,17],
the assumption that the material has no resistance to bending can-
not be fully satisfied. Furthermore, the two-dimensional assumption
cannot be reliably applied to square membranes either.

To reconcile the gap between the above assumptions, van
Rijn, et al. [15] have proposed the weighted superposition of the
two-dimensional deflection and stress equations with the three-
dimensional deflections and stresses predicted by neglecting bend-
ing resistance – effectively combining assumptions (1) and (2) from
above to fit our application. We further expand their theory to
include the residual stress of our nanomembranes which plays a
role in ultimate fracture toughness values. Our adaptation of their
approach is described as follows.

3.1. Theoretical model

To begin, we first consider a two-dimensional clamped
membrane subjected to a uniform pressure, q. A diagram of one such
membrane in a bulge test experimental setup is shown in Fig. 3 and
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Fig. 3. The initial two-dimensional case used to derive intrinsic stress in a bulge test
scenario [14]. A membrane clamped at two edges is subjected to a uniform pressure, q.
The membrane has length, l, thickness, h, and is subjected to a distributed tensile force,
S as the membrane deforms under an applied load. The deflection of the membrane, w
is a function of its horizontal position, x.

has length, l, thickness, h, and is subjected to a distributed tensile
force, S, as the membrane deforms under an applied load. The deflec-
tion of the membrane, w, is a function of its horizontal position, x,
and assumes clamped boundary conditions.

In the two-dimensional case, a rectangular plate of this form
follows the well-known differential equation

D
d4w(x)

dx4
− S

d2w(x)
dx2

= q, (3.2)

with D equal to the resistance to bending or flexural rigidity

D =
Eh3

12(1 − m2)
, (3.3)

where E is Young’s Modulus and m is Poisson’s ratio. Since we
have assumed the two-dimensional case, the general solution for
deflection follows [13]

w(x) =
ql4

16u3D tanh(u)

⎧⎨
⎩

cosh
[
u

(
1 − 2x

l

)]
cosh(u)

− 1

⎫⎬
⎭ +

ql2(l − x)x
8u2D

. (3.4)

Eq. (3.4) is a function of the dimensionless parameter, u, that is
defined by

u6 =
9
(
1 − m2)2

q2l8

8E2h8
, (3.5)

for the case that u � 1 which is generally satisfied for large deflec-
tions in the membranes [15]. In this form it can be shown that the
distributed tensile force is equal to S = 4u2D/l2 [13]. Following this
formalism, Timoshenko shows that a constant tensile stress in this
two-dimensional material can be written as

st =
S
h

=
4u2D

hl2
=

Eu2

3
(
1 − m2

)(
h
l

)2

, (3.6)

where u is still defined in Eq. (3.5) for large deflections. Furthermore,
the bending stress at the edge of the membrane follows [13]

sb =
3q

2u tanh(u)

(
l
h

)2

. (3.7)

Under the condition u � 1 the term tanh(u) approaches unity, and
thus Eq. (3.7) becomes

sb,u�1 =
3q
2u

(
l
h

)2

. (3.8)

Eqs. (3.6) and (3.8) comprise the resulting stresses in the two-
dimensional assumption (1) which we have outlined. The next step
involves evaluating the solution to our problem under assumption
(2) in which the flexural rigidity, D, is set equal to zero. In that case,
Timoshenko has used the principles of virtual displacements to cal-
culate the tensile stress at the middle of a three-dimensional square
membrane clamped at all four edges as [13]

sm =
E

1 − m
1.848

y2
0

l2
, (3.9)

where the central deflection, y0, is given by

y0 = 0.318l
(

ql
Eh

)(1/3)

. (3.10)

As previously stated, the problem presented in this publication can-
not be described completely by assumptions (1) or (2). Instead,
following the example of van Rijn [15], we impose the weighted
superposition between the two-dimensional and three-dimensional
case:

scombined = sm

(
1 +

sb

st

)
. (3.11)

The assumption is dependent on the ratio between sb and s t scaling
identically at the edge of the membrane so that the ratio between
them remains constant. Finally, we incorporate the residual stress in
our membranes with a simple addition:

stotal = scombined + sr. (3.12)

Eq. (3.12) is combined with Eq. (3.1) to produce a complete failure
criteria for the membranes. The resulting equation is rearranged to
form

qf =

√√√√(
Keff

Ic

Y
√
paCm

− sr

Cm

)3
h2

l2E
, (3.13)

where Cm is a constant derived from Eqs. (3.6), (3.8) and 3.9 that
depends on Poisson’s ratio. For our membranes made out of NPN
(m = 0.28 from Ref. [14]) and pnc-Si (m = 0.22 from Ref. [26])
Eqs. (3.6), (3.8) and 3.9 reduce to

st,NPN = 0.356 3

√
q2l2E

h2
; sb,u�1,NPN = 1.511 3

√
q2l2E

h2
;

sm,NPN = 0.260 3

√
q2l2E

h2
(3.14)
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st,pnc−Si = 0.352 3

√
q2l2E

h2
; sb,u�1,pnc−Si = 1.495 3

√
q2l2E

h2
;

sm,pnc−Si = 0.240 3

√
q2l2E

h2
. (3.15)

Thus the above expressions can be rearranged in the form of
Eq. (3.13) to predict the pressures, qf,NPN and qf,pnc−Si at which the
membranes will fail:

qf ,NPN =

√√√√(
Keff

Ic

Y
√
pa(1.364)

− sr

1.364

)3
h2

l2E
(3.16)

qf ,pnc−Si =

√√√√(
Keff

Ic

Y
√
pa(1.259)

− sr

1.259

)3
h2

l2E
. (3.17)

We define Y ≈ 1.1 which designates that failure will occur near
the edge of the clamped membrane [25] where stress concentrations
are the highest.

We note that another commonly used approach for adding
residual stress is through a root-sum-square (RSS) approach. The lin-
ear superposition which we assume in Eq. (3.12) is considered the
worst-case scenario in which residual stress has the most significant
role. Realistically, however, the actual weighting of residual stress
in the material is probably somewhere in between the linear and
RSS weighting. Further investigation is needed to reconcile what the
exact weighting for these nanomembranes should be. For the present
work, a highly accurate weighting of residual stress is not necessary
since it has a near-negligible effect on burst pressure measurements.
This will become evident in the experimental results section when
we explore the effect of varying residual stress on burst pressure
(see Fig. 7c).

4. Determination of model parameters

Prior to burst pressure measurements, some model parameters
need to be determined for the use of Eqs. (3.16) and (3.17). Those
parameters include Young’s modulus, E, residual stress, s r, sidewall
length, l, and pore size, 2a. The thickness of the membranes, h, can
be reliably predicted during the construction of the membranes and
is not described in this section.

4.1. Young’s modulus and residual stress

Young’s moduli and residual stresses of the porous membranes
were directly measured using the bulge test technique [14]. The
method requires a data fit using a least-squares regression algorithm
with Young’s modulus and residual stress as parameters under the
formalism

q = C1srh
w0

(l/2)2
+ C2Mh

w3
0

(l/2)4
. (4.1)

The C1 and C2 coefficients are dependent on the membrane geom-
etry and the film’s Poisson ratio, m, q is the pressure applied to the
membrane, s r is the film’s residual stress, h is the thickness of the
film, w0 is the vertical displacement at the center of the membrane,
l is the length of the square window, and M is the biaxial modu-
lus, E/(1 − m), for an isotropic film. For a square membrane, Vlassak
calculated C1 = 3.393 and C2 = (0.792 + 0.085m)−3 using energy
minimization techniques to match the free energy of the membrane
with the membrane displacement field [14].

A Veeco Wyko NT1100 (Santa Clara, CA) white light interferome-
ter was used to interrogate the change in membrane height under an

applied pressure. The instrument uses a technique known as vertical-
scanning interferometry to achieve a range of 2 mm and resolution of
3 nm during bulge tests. Fig. 3 shows a schematic of the experimen-
tal setup. A membrane chip is sealed inside a custom made enclosure
using an O-ring and tightened bolts. The chamber is pressurized with
compressed Argon from the side that is sealed with the O-ring. A
0–689 kPag (0–100 psig) gas regulator (Harris #301-100-580) and
manometer (VWR #33500-084) are used to control the pressure. To
confirm that there were no gross leaks in the system, a solid silicon
chip was sealed inside the enclosure and pressurized. The pressure
decreased less than 3.4 kPa over five minutes. Therefore, it can be
assumed that there is sufficient accuracy in the pressure measure-
ment over the duration of data acquisition (less than one minute).
The interferometric objective is placed directly above the membrane
window. Pressure is increased in 0.7 kPa increments as the height
data is recorded with sufficient time in between measurements to let
transient flow settle into a steady state. The described setup was used
in this fashion to record bulge test results (Fig. 4) to determine mate-
rial properties. The same setup was used to record burst pressure
measurements (Fig. 6).

Porosity typically affects the stiffness of the nanomembranes.
Although it does not change material properties, the effects can be
accounted for by scaling solid Young’s modulus as Ep = (1 − P)Es

where P is the membrane porosity, Ep is porous effective Young’s
modulus, and Es is the solid Young’s modulus [16,27]. Likewise, resid-
ual stress can be scaled according to s r,p = (1 − P)s r,s. A notable
departure from this model was observed by Kovács, et al. [17] which
required additional exponential scaling of the porosity. In this work,
we avoid all porosity scaling ambiguities by measuring the porous
effective Young’s moduli and effective residual stresses in situ via
Eq. (4.1); therefore, no scaling is required. Although we did not use
the above scaling factors to measure the values in Table 1, those
equations are used later to create Fig. 7b.

Bulge test results are shown in Fig. 4. The porous pnc-Si
membrane in Fig. 4 had a sidewall length of 67 lm and the NPN
membranes had sidewall lengths of 278 lm. An exploration of the
model sensitivity in the experimental results section will demon-
strate that it is absolutely critical to accurately measure sidewall
lengths for small membrane geometries such as these. For reliable
bulge test results on larger membranes, the requirement is not as
stringent.

The fitted values for porous effective Young’s moduli and porous
effective residual stresses of the membranes have been measured
using a single bulge test measurement trial (Fig. 4). For measure-
ments similar to ours with silicon-based membranes, previously
published work has shown that Young’s modulus and residual stress
can be measured within ∼2% and ∼1% variation, respectively, over
ten trials [28]. Therefore, we assume that our measured values have
sufficient accuracy.
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Fig. 4. Experimental data obtained using the bulge test to measure porous effective
Young’s moduli and porous effective residual stresses of the membranes in situ. Mea-
sured parameters are outlined in Table 1. These membranes were not forced to failure.
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Table 1
Material properties used to validate the macroscale model.

Material Average pore
size (nm)

Thickness (nm) Effective fracture
toughness (MPa

√
m)

Porous Young’s
modulus (GPa)

Residual stress
(MPa)

Poisson’s ratio Porosity

pnc-Si 28 20 0.98 128 57 0.22 7%
NPN 66 50 1.45 93 122 0.28 20%
NPN 55 50 1.41 108 127 0.28 14%

4.2. Sidewall length

To accurately measure sidewall lengths, the membranes were
inspected under a light microscope (Olympus BX51). Using a camera
on the light microscope, images were captured of the membranes
and a scale artifact at the same magnification. The scale was then
used to calibrate the images and measure the sidewall lengths in
the image processing program, ImageJ. Although the substrate edges
have angled faces from acid etching, the ambiguity of that effect on
sidewall length (on the order of tens of nanometers) was negligible
since the resolution of our sidewall length measurements was on the
order of single micrometers.

4.3. Pore size

Pnc-Si and NPN have a distinct advantage over other porous
membranes of being amenable to characterization by transmis-
sion electron microscopy (TEM) due to small thickness. As such,
pore distributions can be directly calculated from TEM micrographs
using custom MATLAB scripts (Fig. 5). During construction of the
membranes, samples compatible with a TEM specimen holder were
integrated on each wafer in several radial positions.

The MATLAB routine (available at nanomembranes.org/
resources/software) inputs a digital TEM micrograph of pnc-
Si or NPN. The first operations performed on an image involve
removing “salt and pepper” or speckle noise using a median filter and

Fig. 5. A representative pore size distribution on a pnc-Si membrane. To measure
the porosity of the membranes in this work, (a) a threshold algorithm is applied to
the TEM image to create a binary image, (b) pores are identified and (c) a size distri-
bution calculated. A Weibull probability density fit is applied to the histogram (blue
dashed line).

a background correction algorithm, which uses a nearest neighbor
averaging algorithm to “smooth out” any variations in the lighting
due to non-uniformity in the electron beam. Next, a threshold value
is specified to separate the pores (high intensity pixels) from back-
ground features (low intensity pixels). The result is a binary image
where pores are highlighted in white (‘1’) and the solid film is black
(‘0’) (Fig. 5a). Frequently, the threshold procedure will yield false
positives; that is, areas of solid film that are highlighted white. To
remove these areas, an iterative process of pixel dilation, erosion,
opening, and closing is performed [29]. Any remaining false positives
are identified manually by comparing the binary image with the
original micrograph and removed. Finally, pore statistic calculations
are performed and pore sizes are binned into a histogram.

After acquiring a pore size distribution, the histogram was fit
using a scaled Weibull probability density function [30] in the form
of:

y = c
(

x
a

)b

exp

[
−

(
x
a

)b
]

, (4.2)

where a and c scale the horizontal and vertical dimensions and b
determines the shape of the curve (Fig. 5c). Estimating the pore den-
sity as a continuous curve allows us to graphically compare sets of
distributions on the same plot. It should be noted that due to the
nature of pore formation in pnc-Si and NPN, a sharp pore size cut-
off can be defined. Thus, an exponential fit like the Weibull function
may be used to characterize the pore size distribution. In contrast,
conventional ultrafiltration membranes have a much wider pore size
distribution described by log-normal fits [31].

4.3.1. Pore size distribution error analysis
It is evident in Fig. 5 that our membranes possess average pore

diameters rather than well-defined cracks. For this reason, we only
specify an “effective fracture toughness” in Eqs. (3.16) and (3.17) to
predict when the membranes will burst. An accurate measurement
of the actual fracture toughness of the materials requires well-
defined defects and is subject to experimental variations [23]. The
variations in pore diameter and shape also limit us from defining a
more accurate geometry factor, Y, in Eqs. (3.16) and (3.17). Therefore
we approximate Y ≈ 1.1 which is generally assumed as a first-order
estimate when cracks at the edge of samples promote failure [25]. To
maintain the usability of this model for high-volume inspection and
processing of the nanomembranes, we neglect a meticulous search
for the largest crack (or pore) on each sample, which would therefore
yield a better estimate of Y. The reader may also pose the question of
why we chose a value of 1.1 as opposed to simply 1 for Y. The differ-
ence between Y = 1.1 and Y = 1 in Eqs. (3.16) and (3.17) correlates
to a nominal change in burst pressure of 15–16% for the membranes
presented in this work. Therefore, more research is needed to jus-
tify a departure from the 1.1 value we currently assume since the
value of Y cannot be inconsequentially changed to 1. Despite these
assumptions, it will be shown that our current value for Y predicts
effective fracture toughness values that agree well to previously
published fracture toughness measurements that were investigated
under more stringent conditions with scrupulous geometry factor
analysis.

http://nanomembranes.org/resources/software
http://nanomembranes.org/resources/software
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Variations in porosity over the entire wafer also needed to be
investigated. Typically, a single TEM micrograph is used to character-
ize the pore size distribution across an entire wafer. However, there
are inevitable errors associated with analysis using a low sample
size. Pore statistics are generated from an 11 lm×17 lm micro-
graph. One natural question that should be raised is whether this
area is representative of the entire membrane area, which spans tens
of thousands of square micrometers. To investigate this, the average
pore diameter and membrane porosity were calculated at 10 differ-
ent points on a representative 200 lm×200 lm pnc-Si membrane.
The membrane used in that exploration was not used in the experi-
mental results section of this publication. The median average pore
size and membrane porosity were 19.6 nm and 6.9%, respectively,
with standard deviations in average pore diameter and membrane
porosity of 0.1 nm and 0.2%. From these results, it is concluded that
there is very little variation in morphology within a single membrane
window. Thus, statistical analysis of one region of interest will be suf-
ficiently representative of the entire membrane area. Pore diameter
and porosity have been rounded to the nearest integer for all results
presented in this publication.

5. Experimental results

To determine membrane burst pressures, bulge test experiments
were conducted with increasing pressure until membrane failure.
In these experiments, the top side of the membrane was always
facing the applied pressure as shown in Fig. 3. This orientation
ensures that delamination effects did not play a role in failure.
Eqs. (3.16) and (3.17) were then incorporated into MATLAB to com-
pare theory against experiment. Results are shown in Fig. 6 and a
set of parameters, including best fit estimates of Keff

Ic , are found in
Table 1. The error bars in Fig. 6 represent ± one standard devia-
tion. Standard deviations of the pnc-Si failure pressures are based
on a minimum of 19 trials and standard deviations of all NPN
failure results are based on a minimum of four trials. The agree-
ment between experiment and theory in Fig. 6 proves that Griffith’s
Law is reliable for high-volume, in-line prediction of failure based on
nominal parameters.

For 50 nm thick NPN films with 66 nm pores and 20% porosity,
Keff

Ic ≈ 1.45MPa
√

m; for 50 nm thick NPN films with 55 nm pores and
14% porosity, Keff

Ic ≈ 1.41MPa
√

m; and for 20 nm thick pnc-Si films
with 28 nm pores and 7% porosity, Keff

Ic ≈ 0.98MPa
√

m. These nomi-
nal values were initially retrieved from the work of Matoy, et al. [18],
and Di Maio and Roberts [19]. After slight calibrations within the
uncertainty limits of measured fracture toughness (generally 20%),
we have arrived at our current values. A direct comparison between
our work and that of Matoy, Di Maio and other notable publications
is shown in Table 2. Using these values for Keff

Ic , our model can predict
mean membrane failure pressures within 10% accuracy for square
membrane dimensions from 60 lm to 1.5 mm.

Exploring the parameter space of the simulation offers insight
into the sensitivity of the model and may identify design strategies
for creating stronger membranes. Fig. 7 shows predicted changes in
the burst pressures of pnc-Si membranes as a function of fracture
toughness, porosity, residual stress, pore size, membrane thick-
ness, and error in side length measurement. The exploration shows
that the most significant changes in burst pressure occur with
variations in fracture toughness (a), pore size (d), and membrane
thickness (e), while changes in porosity (b) and residual stress
(c) have minimal effects on the failure of the material. Inaccu-
racy in the measured side lengths of square membranes (f) are
shown to have a much more significant effect on smaller mem-
branes compared to larger ones. The main conclusion to be drawn
from Fig. 7f is that a slight error in the measurement of window
lengths (e.g. ≈ 10 lm) could easily be the dominant source of error in
burst pressure measurements. The burst pressure axis scale has been
maintained across all plots for an intuitive comparison of parameter
sensitivities.

A final remark should be made in regards to the deduction
that higher porosities yield slightly higher strengths of the material
(Fig. 7b). Although mathematical porosity scalings were not required
for the values in Table 1, the simulation in Fig. 7b assumes the rela-
tionships Ep = (1 − P)Es and s r,p = (1 − P)s r,s which decrease the
effective Young’s moduli and residual stresses with higher porosi-
ties. These scalings generally make the membrane more flexible and
therefore more resistant to failure.

6. Discussion and conclusions

We developed a mathematical model based on Griffith’s law that
predicts burst pressures of thin nanoporous membranes based on
an effective fracture toughness from previously published litera-
ture. Our experiments show that porous nanocrystalline silicon and
silicon nitride membranes fail under catastrophic brittle fracture.
Assuming a macroscopic brittle behavior and considering the aver-
age size of the pores as the initial crack size, our model calculates
the resultant bulge test pressure that membranes can withstand
before fracture. The significant outcome of this work is a mathemat-
ical model for predicting burst pressure that accounts for the effect
of various structural parameters on the macroscopic behavior of the
nanomembranes including variations in thickness, pore size, and
porosity. The model predictions are in agreement with experimen-
tal results within 10% accuracy for square membrane dimensions
from 60 lm to 1.5 mm through over 100 trials. The model is very
straightforward and only needs to slightly calibrate one parameter –
effective fracture toughness. Unlike the previous approaches [16,17],
our method does not require FEA for accuracy.

This publication deduces fracture toughness of porous NPN mem-
branes to be much lower than their non-porous counterparts [2] in
a bulge test scenario. Our mathematical model predicts a fracture
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Fig. 6. Predicted burst pressures vs. measurement for square membranes on (a) a linear scale and (b) a log-log scale. Error bars represent ± one standard deviation of experimental
results.
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Table 2
Comparison of the fracture toughness values used in this publication. All values are generally subject to 20% uncertainty leaving room for small calibrations in the current work.
aExperimental spread from best-fit effective fracture toughnesses. bValues indicate corrected experimental spread according to Picard et al. [32]. cAverage value and spread. dBulk
values of crystalline Si3N4 and Si are indicated for comparison to our amorphous thin film tests.

Source Material morphology Test method SiNx KIc (MPa
√

m) Si KIc (MPa
√

m)

Current worka Sputter deposition (amorphous) Bulge 1.43±0.15 0.98±0.01
Matoy [18]b PECVD (amorphous) Micro-cantilever 1.3±0.1 –
Di Maio [19]c,d Bulk crystalline Micro-cantilever – 1.1±0.016
Wong [33]c,d Bulk crystalline Double cantilever beam – 0.94±0.03
Wong [33]c,d Bulk crystalline Four-point bending – 0.90±0.11
Wong [33]c,d Bulk crystalline Microindentation – 1.00±0.08
Michot [34]c,d Bulk crystalline Double cantilever beam – 0.93±0.05
Anstis [35]d Bulk crystalline Double torsion 2.1±0.2 0.8±0.2
Anstis [35]d Bulk crystalline Double cantilever beam 4.0±0.3 –

toughness of ∼ 1.43 MPa
√

m for NPN membranes, while Merle
and Göken [2] measured values around 6 MPa

√
m for solid non-

porous membranes. Although this discrepancy may appear problem-
atic, we attribute the disagreement to experimental conditions. It
should be noted that large variations in nanoscale fracture toughness
values occur as a consequence of different loading conditions [23].
Merle and Göken fabricated defects in the center of their membranes
which promoted failure in pure tension. In contrast, our membranes’
defects lie at the boundaries which catalyze failure under a com-
bination of bending and tensile stress. The combination of bending

and tension produces larger stresses compared to pure tension for
the same applied bulge test pressure. To reinforce this significance,
Matoy, et al. [18] have measured the fracture toughness for SiNx

micro-cantilevers to be approximately 1.2–1.4 MPa
√

m (see Table 2)
when subjected to pure bending. The findings of Matoy, et al. not
only validate our observations, they lead to the conclusion that
bending is most likely the dominant failure mode in NPN nanomem-
branes. Our observed fracture toughness of pnc-Si nanomembranes
(∼ 0.98 MPa

√
m) is validated by its agreement to that of bulk

monocrystalline silicon [19,33-35].
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Nanomembranes are now used in research and commercial set-
tings for separations [3,8,10], cell culture [4,5], pumping [6], and
sensing [7]. The volumes of fluids that can be processed in these
applications are limited by the size of membranes that can be reli-
ably constructed. Stronger membranes are not only less susceptible
to bulge test failure, they result in higher yields during manufac-
turing and fewer failures during device assembly. Therefore, if a
reliable understanding of the mechanics of nanomembrane failure
can enable larger area devices, it can both lower cost and increase
utility. The model developed here not only provides an excellent fit
to the burst pressure data, it helps identify which parameters should
be targeted in manufacturing in order to improve nanomembrane
mechanics.

Our work over the years has identified a nominal burst pressure
value of ∼30 kPa for reliable use of nanomembranes in many
application areas. The experimental findings in this publication show
that NPN crosses this threshold when membranes are smaller than
∼0.7 mm on a side while pnc-Si membranes require side lengths
less than 0.25 mm to exceed this threshold. This finding is consistent
with a significant increase in the number of devices and applications
we have been able to explore since the introduction of NPN [12].
Since NPN and pnc-Si porosities, thicknesses, and elastic moduli
are comparable, the primary explanation for the improved strength
of NPN compared to pnc-Si appears to be the increase in frac-
ture toughness. Ultimately we expect that atomistic simulations of
nanomembranes will be the key to selecting materials and designing
ultrastructures to maximize fracture toughness. More immediately,
our sensitivity study identifies smaller pore sizes and increased
membrane thickness as the parametric targets for improved mem-
brane strength. Of course both of these parameters impact mem-
brane performance as a molecular filter and thus any increases in
strength must be weighed against performance goals.
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