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Chapter 5

Raman-Silent Magnesium Fluoride
Nanomembrane Use in
Raman-Compatible Cell Culture

5.1 Abstract

Raman spectroscopy provides amethod to noninvasively assess the chem-

ical composition of materials, quantitatively. Utilizing this method to track

cellular processes in vitro has gained popularity in recent years. However,

current methods in use where cells are grown on non-permeable supports

create a key limitation that prevents cells from adopting healthy morpholo-

gies. Furthermore, permeable materials that are commonly used in cell

culture are not appropriate for Raman spectroscopy because of material

compositions that limit the amount of power used for measurement, rel-

atively large membrane volumes that scatter light, and large background

signals that decrease the efficiency of measurement. Here, we develop

permeable materials that support epithelial cell culture while enabling Ra-



CHAPTER 5. RAMAN-SILENT MGF2 NANOMEMBRANES 135

man microspectroscopy. Thin films of magnesium fluoride (MgF2, 50-200

nm thick) were evaporated onto silicon nitride nanomembrane templates

(50-200 nm thick) of varying pore sizes (50-400 nm pore diameters) and

then released from the template using a reactive ion etch process, with

yields up to 50% for 0.5 mm microporous square windows. The result-

ing freestanding films have pore sizes similar to the initial templates and

support cell culture over a suitably long period (4 weeks). Raman mea-

surements of cells deposited on the nanomembranes are able to localize

RNA to the cytoplasm. ARPE-19 cells grown over a period of four weeks

on the fabricated substrates express a mosaic of a tight junction protein

(ZO-1), indicative of a polarized cell monolayer.

5.2 Introduction

There is a growing interest in Raman spectroscopy as a non-invasive,

label-freemethod to detect different substances in cells. Ramanmicrospec-

troscopy enables the study of cellular transport and composition by illumi-

nating direct, spatially resolved, quantitative concentrations of biomolecules.

Example applications include liposome nanoparticle uptake [124], nutri-

ent flow within a cell [125], discrimination between cardiomyocyte pheno-

types [126], and subcellular localization of nucleic acids [127]. Common

cell culture work is performed on plastic, glass, or silicon materials due to

the ease of manufacture and low cost, but these substrates have a large
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Raman signature (Si = 520 cm�1) that can dwarf biomolecular signatures

[128]. Therefore, Raman studies involving living cells are typically per-

formed with magnesium fluoride (MgF2), quartz, or calcium fluoride sub-

strates that have very low background signatures in the biological finger-

print region (BFR) between 600 and 1800 cm�1 [127]. Substrate perme-

ability is necessary for some cell phenotypes as epithelial cells are known

to polarize on permeable, but not impermeable substrates [129, 130]. In-

troducing permeability to a Raman compatible substrate would permit the

study of barrier tissue models in vitro that are better mimics of in vivo bar-

riers.

An ideal Raman substrate for this situation would be: 1) highly perme-

able, allowing unhindered exchange of small molecules between cells and

a basolateral compartment, 2) Raman transparent over the BFR, and 3)

support cell adhesion and viability over extended periods (weeks) needed

for epithelial monolayers to mature. Thick (1-10 µm) polyester and poly-

carbonate track-etched materials that are commonly used for epithelial cell

culture are impossible to use for Raman imaging. These carbon-rich ma-

terials strongly scatter light, fluoresce, and produce confounding Raman

signals that will mask biological fingerprints. More recently developed sili-

con (pnc-Si, [2]) and silicon nitride nanomembranes (NPN, [22]) have the

requisite permeability (50 nm thick, >15% porosity) and biocompatibility [4].

Unfortunately, silicon has a strong first-order Raman signal at 520 cm�1,

as does annealed silicon nitride between 750 and 1100 cm�1 [131], which



CHAPTER 5. RAMAN-SILENT MGF2 NANOMEMBRANES 137

Wavenumber

C
ou

nt
s 

(A
U

)

*

*

pnc-Si
pnc-Si + Cell

520 cm-1

A B C

Figure 5.1: pnc-Si Unsuitable for Raman Measurements. (A) Cell deposited on pnc-
Si nanomembrane. (B) The silicon signal from the pnc-Si substrate (blue, 520 cm�1)
overwhelms the Raman signature of a cell on the nanomembrane (orange). (C) 30 mW
of laser power is sufficient to melt the pnc-Si nanomembrane.

overlaps with several peaks associated with proteins, DNA, nucleic acids,

and lipids [132]. Figure 5.1 demonstrates an example of this behavior on

a pnc-Si nanomembrane. The large background peak of silicon is evident,

especially in comparison to the minimal Raman signatures produced by a

cell grown on the nanomembrane. Even small amounts of laser power can

also melt the pure silicon nanomembrane in situ, fundamentally limiting the

measurement rate. By contrast, the Raman background signature of MgF2

is negligible in the BFR [133], accounting for the use of MgF2 coverslips in

Raman-compatible cell culture. Thus, the goal of our effort was to create

a MgF2 membrane with an ultrathin, porous structure and then to demon-

strate the application of this novel material to Raman imaging of cultured

epithelial cells.
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5.3 Fabrication

Given that the only unfavorable characteristics of silicon nanomembranes

as a cell substrate is that the materials are not Raman compatible and

readily absorb laser power (Figure 5.1), we developed a template strat-

egy that allowed us to substitute MgF2 for silicon-rich silicon nitride, NPN.

We began by evaporating 50 nm of MgF2 (200 �C, 0.1-0.3 nm
sec , platen ro-

tation on) on the front side of NPN chips (SiMPore Inc., West Henrietta,

NY) (Figure 5.2a). The deposition partially infills the NPN template with-

out occluding the pores as a result of the line-of-sight evaporation process

(Figure 5.2b, 5.2f). The hybrid membrane was then thermally annealed at

600 �C for 2 hours, to stabilize and strengthen the thin film. Finally, the

NPN template is removed by applying a reactive ion etch (90% CHF3, 10%

Oxygen, 75 mTorr, 100 W,⇠1 nm
sec etch rate) for 55 seconds (Figure 5.2c) to

the backside of the annealed chips, creating nanoporous MgF2 (npMgF2).

This etch recipe was chosen from observations of etch selectivity between

evaporated MgF2 films and silicon nitride. By iterating power, pressure,

and gas ratios of the etch recipe, we found that faster etch rates resulted

in lower yielding lots, and that a high (>5%) oxygen flow was necessary

to minimize fluorocarbon formation [134]. SEM inspection of membrane

cross-sections confirm that MgF2 nanomembranes are ⇠50 nm thick (Fig-

ure 1d) while STEM images clearly show open pores (Figure 5.2e). A cus-

tom pore analysis software was used to determine pore histograms [10]
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Figure 5.2: Annealed npMgF2 Nanomembrane Fabrication. npMgF2 nanomembrane
material properties. (a)-(c) npMgF2 relief pattern transfer, with cartoon cross-sections of
nanoporous films (not to scale). Beginning with a freestanding film of NPN (a), MgF2 is
evaporated onto the substrate (50 nm, 0.1-0.3 nm

sec , 25
�C, Platen Rotation), coating the

porous substrate, resulting in a hybrid material (b). After an annealing process (600 �C, 2
hrs,Ar ambient), the substrate is then inverted and purified using RIE (90%CHF3, 10%O2,
75 mTorr, 100 W), (c) releasing a freestanding nanoporous film of MgF2. (d) SEM cross-
section of a fabricated MgF2 nanomembrane (50 nm thick, coated with Au). (e) STEM
image displaying open nanopores (white) in a MgF2 nanomembrane. (f) Pore histogram
generated from representative SEM images, displaying that a MgF2 nanomembrane will
have reduced pore sizes compared to the template. (g) Example 5.4 mm square chips
fabricated using this strategy with freestanding 50 nm thick Pt (sputtered, no anneal), Au
(sputtered, no anneal), and npMgF2 nanomembranes. At right is an inverted Au chip post
RIE, with three 3 x 0.7 mm, 50 nm thick freestanding gold nanomembranes exposed
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Table 5.1: npMgF2 Process Yield. Free-standing 50 nm npMgF2 membranes were
manufactured as described in Figure 5.2. The 200 µm window size was produced under
a different evaporation temperature (250 �C) and was not annealed

Window
Size
(µm)

Starting
Number of
Chips

Remaining
after Evap-
oration

Remain-
ing after
Anneal

Remaining
after Etch

Overall
Process
Yield
(%)

100 65 62 62 60 92 %
200 10 10 N/A 2 20 %
300 65 62 57 22 34 %
500 65 41 26 1 2 %
700 65 58 49 0 0 %
900 65 38 29 15 23 %
1100 65 27 23 3 5 %

from STEM images which were then compared to the original NPN tem-

plate. The histograms indicate a reduction in pore diameters by about 10

nm (Figure 5.2f). A slight narrowing of the distribution and a slight reduc-

tion in the porosity likely follows from the loss of the smallest pores (< 10

nm) in the NPN template due to total occlusion during the MgF2 deposition.

The relief process demonstrated here can be also extended to other de-

posited thin films (Figure 5.2g), such as gold and platinum, limited by the

mechanical strength of the deposited film, thin film stresses, and a modest

selectivity to the reactive ion etch. Utilizing other direct deposition tech-

niques, such as sputtering, may change the process by requiring different

environmental factors to get a stable thin film. Extending the process to

other materials may require different RIE chemistries depending on their

reaction to CHF3/ O2.

Overall yield was strongly dependent on the membrane window size
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(Table 5.1) with 100 µm square windows resulting in yields > 95% while

larger area membranes have yields < 20%. The greatest losses occur

during the etch process (Table 5.1), suggesting that scaffolding [18, 135]

should be explored to improve process yield over larger windows. Another

way to improve yield would be to make the MgF2 nanomembranes thicker,

however thicker films would require larger diameter pore templates, to pre-

vent total pore occlusion during MgF2 deposition. While small active areas

(0.01-0.05 mm2) can be sufficient for many applications, cell culture may

require larger areas for inspection to visualize hundreds of cells, as well as

providing enough area for sufficient basolateral nutrition.

To that end, we used a similar process to create thickerMgF2 nanomem-

branes in an effort to make the fabricated nanomembranes stronger and

improve the yield of the process. In these studies, we evaporated 200

nm of MgF2 (200�C, 0.3-0.5 nm
sec , platen rotation, Figure 5.3) onto the flat-

side of microporous silicon nitride membranes (500 nm pores, SiN, 120

nm thick, SiMPore Inc., West Henrietta, NY). The microporous SiN mem-

branes had 2 variants: high porosity (1:1 pore spacing) and low porosity

(1:3 pore spacing). These hybrid membranes were then released using a

RIE with same etch chemistry (90% CHF3, 10% Oxygen, 75 mTorr, 100

W, ⇠1 nm
sec etch rate), for a longer time (140 seconds) to compensate for

the thicker template. SEM inspection of the fabricated membrane cross-

sections confirm that microporous MgF2 (µpMgF2) nanomembranes are

⇠200 nm thick (Figure 5.3d), while TEM confirms that the micropores are



CHAPTER 5. RAMAN-SILENT MGF2 NANOMEMBRANES 142

a) b)

SiSi

120 nm SiN
Si Si

RIE

120 nm
200 nm

SiN
MgF2

c) d)

Evaporation

Figure 5.3: µpMgF2 Nanomembrane Fabrication. (a) 200 nm thick MgF2 coating is
evaporated onto a SiN substrate containing 400 nm wide micropores. (b) The composite
film stack is inverted, and then the SiN template is removed using a reactive ion etch
process. (c) TEM image of the free-standing µpMgF2 nanomembrane shows that the
pore size largely is preserved, with a few ”fingers” of MgF2 infilling the edge of pore. The
heat of the electron beam fuses MgF2 grains together, leading to a textured pattern. (d)
SEM cross-sectional image of a thinned substrate, 192 nm MgF2 on top of 20 nm SiN.
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open (Figure 5.3c. The thicker MgF2 microporous membranes also expe-

rience pore narrowing from infilling, where residual ”fingers” remain due to

the high selectivity of MgF2 to the etch chemistry. The yields of the thicker

microporous membranes were significantly improved compared to the thin-

ner nanoporous membranes, doubling the number of chips that survived

the process (Table 5.2). The higher porosity µpMgF2 did show larger yield

than the npMgF2, but had lower yields than the low porosity MgF2 chips

(Figure 5.4). This could be due to the larger number of pores around the

windows of the nanomembrane, which could provide mechanical defect

sites for the membrane to rupture.

5.3.1 Material Characterization

WeusedAuger electron spectroscopy (AES), energy dispersive x-ray spec-

troscopy (EDX), and x-ray photoelectron spectroscopy (XPS) measure-

ments to examine the elemental composition of membranes and confirm

the effectiveness of the etch process. EDX (EDAX on ZeissAuriga, Univer-

sity of Rochester) and XPS (Kratos Axis Ultra, University of Rochester) of

npMgF2 thin films were performed, and EDX of µpMgF2 thin films were car-

ried out using a Phi 710 scanningAuger nanoprobe under ultrahigh vacuum

conditions in the Imaging and ChemicalAnalysis Lab at Montana State Uni-

versity. Acquisitions were performed with a 10 keV primary electron beam

and a current of 0.2 nA for an 8 nm spot size. Spectra were averaged
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Figure 5.4: µpMgF2 Yield Comparison. The patterned membranes with higher porosity
(1:1 pore spacing) had worse yield than the membranes with lower porosity (1:3 pore
spacing) at larger window sizes.
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Table 5.2: µpMgF2 Yield Statistics

Window
[mm]

Low
Porosity
Chips
Start [#]

Low
Porosity
Chips af-
ter Evap.
[#]

Low
Porosity
Chips af-
ter Etch
[#]

Low
Porosity
Yield
After
Evapora-
tion

Low
Porosity
Yield
After
Etch

Low
Porosity
Etch
Process
Yield

0.1 30 30 26 100% 87% 87%
0.3 39 39 38 100% 97% 97%
0.5 30 29 24 97% 80% 83%
0.7 32 29 23 91% 72% 79%
0.9 31 9 3 29% 10% 33%
1.1 36 31 9 86% 25% 29%
Overall 198 167 123 84% 62% 74%

Window
[mm]

High
Porosity
Chips
Start [#]

High
Porosity
Chips af-
ter Evap.
[#]

High
Porosity
Chips af-
ter Etch
[#]

High
Porosity
Yield
After
Evapora-
tion

High
Porosity
Yield
After
Etch

High
Porosity
Etch
Process
Yield

0.1 35 35 30 100% 86% 86%
0.3 28 28 17 100% 61% 61%
0.5 36 35 17 97% 47% 49%
0.7 34 31 9 91% 26% 29%
0.9 34 31 2 91% 6% 6%
1.1 28 24 2 86% 7% 8%
Overall 195 184 77 94% 39% 42%

Total
Chips

Chips
Left after
Evap.

Chips
Left after
Etch

Yield af-
ter Evap-
oration

Yield af-
ter Etch

Etch
Process
Yield

Total Sum 393 351 200 89% 51% 57%
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Figure 5.5: MgF2 Nanomembrane Material Properties. (a) EDX map of a broken,
curled npMgF2 membrane is rich in magnesium and fluorine but not silicon. White arrows
indicate the region over free space, away from the substrate chip. The entire membrane
stack is over 85% pure. (b) EDX map of a µpMgF2 membrane. The evaporated layer
of MgF2 is very pure, however, a thin SiN skin (c) remains underneath the material. (b,
c) The author acknowledges the Imaging and Chemical Analysis lab at Montana State
University for the use of their Auger nanoprobe tool.

over 30 cycles for an energy range of 0-2000 eV with a 0.1 eV step size.

Maps were merged using the included Multipak software. When we found

the ultrathin free-standing npMgF2 membranes produced low EDX signals

due to the tiny amount of material volume, we created folded remnants of

the membrane by intentionally fracturing the substrate to produce a more

robust signal. The presence of Mg and F elemental signatures, along with

the absence of Si in one remnant, are apparent from the EDX images of

MgF2 curls shown in Figure 5.5a. Analysis of the small segment of remnant

that protrudes into free space reveals that that composition of the free ma-

terial is 85% MgF2, however, XPS measurements that analyze only a thin

section on the surface of the evaporated film show that the evaporated film

lacks silicon nitride (Figure 5.6), indicating that some residual silicon nitride

of the template remains. Similarly, µpMgF2 membranes showed strong Mg
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Figure 5.6: npMgF2 XPS Composition. The starting substrate (NPN) is composed of
a silicon-rich silicon nitride, and the evaporated film (after post-etch release) is composed
of mainly magnesium and fluorine.

and F elemental maps (Figure 5.5b), however there was a thin SiN layer

underneath the membrane (Figure 5.5c). Previous imaging bounds the

thickness of this layer at less than 5 nm. For a 200 nm thick freestanding

npMgF2 membrane, this would comprise a 2.5% SiN impurity.

To better understand the structural component of these fabricated thin

films, the microporous and nanoporous MgF2 were imaged under TEM

(Chapter 4). Figure 5.8 shows some structural differences between the

microporous and nanoporous thin films. As the nanoporous film is only 50

nm thick, it is more transmissive and it is easier to observe finer details of



CHAPTER 5. RAMAN-SILENT MGF2 NANOMEMBRANES 148

0.5

5

50

0 0.5 1 1.5

Bu
rs

t P
re

ss
ur

e 
[P

SI
]

Square Window Side  Length [mm]

Microporous Burst Pressure

High Porosity Average Low Porosity Average

Figure 5.7: Mechanical µpMgF2 Nanomembrane Strength as a Function of Porosity.
Strengths are not significantly different from each other. Error bars are 1 standard devia-
tion.

the MgF2 grains that comprise the membrane. The nanoporous template

pattern is familiar, but changed slightly as thicker edges of MgF2 surround

the nanopore due to MgF2 coating the NPN’s inner pore sidewalls dur-

ing the evaporation process. The µpMgF2 film is much thicker, and many

grains align into a banded pattern. Here, infilling appears as ”fingers” of

MgF2 coating the thicker template sidewalls (120 nm vs 50 nm). These

structures aren’t completely contiguous, and thus some have broken off

during processing. The effects of residual silicon nitride are obvious as the

additional thickness causes a loss of transmission in the image, blurring

out the details of MgF2 grains. A crack in the residual NPN template also
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suggests that the MgF2 is not strongly bound to the underlying template,

as swathes of the membrane are without defect. The flakes of NPN at thin

layers thus might fracture and separate from the MgF2 as the template is

etched away, creating a non-uniform free-standing release mechanism.

A B

Residual Silicon 
Nitride

Freestanding 
μpMgF2

Figure 5.8: Thin-Film MgF2 TEM Structure. (A) npMgF2 displays open pores and
some infilled structures reducing the effective pore size. (B) µpMgF2 with some residual
SiN template remaining. The central region of the membrane clears first during the RIE.
A crack in the underlying template is observed.

Figure 5.9 shows a primary defect mode in µpMgF2 nanomembrane

structure. As many areas of the µpMgF2 are intact, sometimes cracks form

along edges or between pores. This is probably the reason that larger

window sizes have lower yields (Table 5.2, as an increased chance to form

a critical defect. One hypothesized reason for the cracking is that the MgF2

film absorbs residual water vapor from it’s environment which increases it’s

film stress [136]. These cracks are very small, only 5-10 nm across, which
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Figure 5.9: Defect in µpMgF2 TEMStructure. (A) Many large pieces of µpMgF2 appear
intact over the scale of 10 µm. (B) Cracks are a primary defect mode in µpMgF2, aligned
with the membrane edges, as well as traversing from pore to pore, akin to weakness in
corrugated paper. (C) Magnified view of a crack between two pores. (D) The heat of the
TEM beam is enough to cause the thin film to fuse, eliminating the crack.
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Figure 5.10: Burst Pressure Setup. (A) A chip is sealed into an aluminum jig using
a face plate and o-ring. Membranes distend as nitrogen flows are applied to the chip,
indicating a good seal. (B) Flow rates are measured using a rotometer and (C) pressures
are recorded using a digital manometer.

make them a candidate for a reflow/thermal anneal process. In Figure 5.9d,

the intensity of the TEM beam is enough to cause reflow in the MgF2 layer,

which suggests there is opportunity for such a process improvement.

To evaluate the strength of the fabricated nanomembranes, chips were

sealed into a custom aluminum jig and then destroyed using increasing

flows of nitrogen (Figure 5.10). The maximum pressure before destruction

was then recorded [22, 23]. Even with the small residual amount of silicon

nitride, burst pressures for MgF2 nanomembranes are ⇠2.7x weaker than

the NPN template at the same membrane area (Figure 5.11). The power

law relationship between burst pressures and window size indicates burst

pressures greater than 5 PSI, a value that we have found is predictive of

the successful assembly and use of nanomembranes in cell culture devices
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Figure 5.11: Mechanical MgF2 Nanomembrane Strength. Membranes are burst with
flows of nitrogen as an indicator of mechanical strength. (Left) Silicon nitride (NPN) is
substantially stronger than both the fabricated npMgF2 and µpMgF2. By making the
µpMgF2 material thicker, we have modestly increased the burst pressure compared to
the nanoporous variant. Error bars are 1 standard deviation. (Right) Similarly, the yields
of each chip differ based on both the membrane area and the underlying template pattern.

[4]. This pressure is achieved for ⇠0.2 mm square membranes or smaller

for the npMgF2 and 0.5 mm square membranes for the µpMgF2. Even

though the strength of fabricated microporous templates were not signifi-

cantly different from one another with regard to porosity (Figure 5.7), there

were noticeable impacts on yield through the etching phase (Table 5.2).

We speculate that the flexibility of the thinner, higher porosity membranes

may be causing the decrease in yield through the etching step, which would

be ameliorated by scaffolding that reduces the effective window size.
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5.4 Cell Culture

5.4.1 Cytocompatibility

To evaluate whether the evaporated MgF2 material is cytocompatible, HU-

VEC cells were seeded onto MgF2 nanomembranes and stained with a

Live/Dead assay (Invitrogen L3224).

Methods

Four nanomembranes were placed flat-side up in a 6 well plate suspended

over 1 mm high, 3 mm wide channels, allowing media to make contact to

both sides of the nanomembrane. The chips were attached to gaskets iso-

lating the top membrane area from each other (simple stiction). The gasket

assembly was sterilized with autoclaving prior to use. The assemblies were

placed in wells, then MCDB131 complete media was used to hydrate each

channel. P7-P9 HUVECs were seeded on the on the flat surface of each

chip (1:20 split of T-25 confluent flask, 20 µL/well). After letting the cells

adhere for 1 hr, each well was flooded with 5 mL of media, and placed into

the incubator. After 3-7 days, cells were stained with the Live/Dead stain

(ThermoFisher Scientific, L3224) according to manufacturer’s instructions,

and then fixed with 3.7% formaldehyde and washed with PBS. The live

stain used here is a Calcein AM stain (2 µM in D-PBS, green) which reacts

to the live cell’s esterase activity and requires intact cell membranes to re-
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tain it, while the dead stain is ethidium homodimer-1 (4 µM in D-PBS, red),

which is excluded by cells that have intact cell membranes.

Results

A B C

Figure 5.12: Live/Dead Stain on npMgF2/µpMgF2. (A) P7-P9HUVEC cells were plated
on MgF2 nanomembranes in a 6 well plate on silicone gaskets, then the well was flooded
with media. (B) Combined Phase/Fluorescence image of HUVECs on npMgF2 after 3
days (Live = Green, Dead = Red). The black outline is the edge of the freestanding
membrane (200 x 200 µm square). (C) Fluorescence image of HUVECs on µpMgF2 after
7 days, 78-97% of cells survive.

Figure 5.12 demonstrates the general viability of the fabricated MgF2

films. As the cells culture for longer times, the layer becomes more con-

fluent. The large proportion of Live cells (78-98%) is to be expected as

MgF2 coverglasses are commonly used in Raman imaging of cells. We

expect the material biocompatibility, however, the thin film manufacturing

of the MgF2 nanomembranes differs from the MgF2 coverglasses in use.

Coverglasses are fabricated by polishing down crystalline MgF2 at a cer-

tain crystal axis orientation to thicknesses of ⇠100 µm. Our evaporated
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thin films contain elements of the materials that are found in the crucible,

as well as being polycrystalline. Though manufactured in a different way,

these images confirm that the evaporated MgF2 thin film is suitable to grow

and attach cells.

5.4.2 Cell Culture

To demonstrate the utility of the permeable Raman substrates, we cultured

ARPE-19 cells on the nanomembranes for 3-4 weeks, and evaluated the

cultured cells for a permeability-dependent phenotype (ZO-1 expression).

It is well known that these cells do not polarize well on TCP, as evidenced

by the lack of ZO-1 staining [130]. This cell line is used in models of reti-

nal epithelial fluid transport, and would have value in transport studies of

pharmacological agents across the blood-retinal-barrier for drug discovery.

Methods

npMgF2 Cell Culture

ARPE-19 cells were cultured on tissue culture plastic (TCP), Transwell in-

serts (polyester, 0.4 µm pores, Corning Inc.), and npMgF2 nanomembrane

chips. The chips were positioned into a Transwell insert that had the fil-

ter removed and then were sealed using PDMS, a biocompatible polymer,

creating a two-compartment Transwell with a nanomembrane element. Af-
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ter an ethanol sterilization, P27 ARPE-19 cells were seeded in a 12 well

plate (100,000 cells/well) on MgF2 nanomembrane inserts, polyester Tran-

swells, and non-porous tissue culture plastic, having previously incubated

the substrates in media (DMEM:F12,penicillin (100 U/mL), streptomycin

(0.1 mg/mL), amphotericin (0.25 µg/mL) and Fetal Bovine Serum (FBS,

10% v/v,)) for 3 hours. Cells were grown over 3 weeks in an incubator

(37 �C, 5% CO2) to confluence on these substrates, exchanging the media

every other day.

Confluent cell monolayers were washed with PBS and fixed in 4% para-

formaldehyde for approximately 10 min at room temperature. Cells were

then washed 3 times with PBS and permeabilised by incubating with Tri-

ton X-100 (0.1% v/v in PBS) for approximately 10 min. Cells were then

washed with PBS, followed by the application of 1% BSA/PBS for approx-

imately 1 hour. Thereafter, BSA/PBS solution was aspirated and replaced

with mouse, anti-human ZO-1 (primary) antibody, diluted in 1% BSA/PBS.

Cell samples were incubated with the primary antibody overnight in the

fridge. The primary antibody solution was then removed and cells washed

with PBS (3 times). FITC-labelled goat, anti-mouse (secondary) antibody,

diluted according to manufacturer’s instructions in 1% BSA/PBS was then

applied to the cells for 1 hour. The secondary antibody solution was then

aspirated and cells washedwith PBS extensively. TheTranswell filter mem-

brane was excised and mounted on glass slides (using DAPI-containing,

ProLong Gold antifade/mounting medium) for confocal imaging, which was
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Figure 5.13: µpMgF2 Cell Culture Devices.

performed using a Leica TCS SP2 system mounted on a Leica DMIRE2 in-

verted microscope (University of Nottingham). Image stacks were recon-

structed using ImageJ.

µpMgF2 Cell Culture

Thin 300 µm silicone gaskets (Specialty Silicon Fabricators) were cut

using a computer controlled knife cutter (Silhouette CAMEO). These gas-

kets were manually aligned to create microfluidic channels above and be-

low the MgF2 nanomembrane, with a 5 mm thick PDMS block on top with

wells as a media reservoir. These layers were bonded using UV-ozone for

15 minutes at 100W and cured at 70 �C overnight (Figure 5.13). The active

area for cell growth is the top well for the device, 4 mm diameter circle.

Devices were autoclaved, and COSTAR inserts (polycarbonate, Corn-
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ing, Cat. No. 3413, 400 nm pores, 10 microns thick) were sterilized by

ethanol immersion for 1 hr. ARPE-19 media with 10% FBS was then incu-

bated in all devices and wells for 1 hr. Autoclaved DI water was placed in

each plate to provide a local source of humidity. P5-P9ARPE-19 cells were

seeded into devices (2000-4000 cells/well), inserts, and tissue culture plas-

tic wells at 5 x 105 cells/cm2. Growth was imaged on µpMgF2 nanomem-

branes, tissue culture plastic and COSTAR inserts, with a phase-contrast

microscope. Cells were grown in an incubator (37 C, 5% CO2) and media

was replaced 3x a week (MWF) for 28 days.

Cells were fixed using 4% paraformaldehyde in ARPE-19 media for 15

minutes (4 �C), then washed 3x with PBS and permeabilized using 0.1%

Triton X-100 for 7 minutes. The cells were washed, and then blocked with

1% BSA in PBS for 1 hr to limit aspecific binding at room temperature. Pri-

mary rabbit-antihuman ZO-1 antibody (HPA001636, Millipore Sigma, 1:200

dilution) was added to each device and incubated overnight at 4 �C. The

following day, the cells were washed 3x, and then the secondary goat-

produced FITC-antirabbit antibody(F0382, Millipore Sigma, 1:50 dilution,

50 microliters) was added for 1.5 hrs. Devices were washed 3x and coun-

terstained with DAPI (1 µg/mL), and mounted onto coverslides with Pro-

Long antifade solution. Confocal stacks were gathered on Leica (SP8),

Olympus (Fluoview FV1000) and Zeiss (LSM 880) microscopes. Pinhole

diameters ranged from 51-105 µm, with 560-600 ns pixel dwell times. Im-

ages were processed using ImageJ, with max-intensity Z-projections to
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merge layers.

Results

Having characterized the basic mechanical, material, and cytocompatible

properties of MgF2 nanomembranes, we then investigated their viability as

RPE cell culture substrates. A confluent monolayer of ARPE-19 cells was

cultured over 3 weeks on npMgF2 nanomembranes and polyester Tran-

swells (21 days), as well as non-porous tissue culture plastic controls (23

days) and then stained for the tight junction protein (ZO-1) to evaluate cell

morphology (Figure 5.14, 5.15). The fragility of the npMgF2 was a chal-

lenge as only 20% of the nanomembranes survived the full 21 days. Bub-

bles were a primary cause for concern under the nanomembrane areas,

as the region of high surface tension could cause them to rupture. The

mosaic appearance of the protein on permeable MgF2 nanomembranes is

a desirable trait of long term epithelial cell culture that only occurs if the

substrates are permeable [129, 130]. These junctions appear punctate on

the porous part of the nanomembrane and lack a completely continuous

boundary as on the polyester transwell, which may mean that the develop-

ment of the whole mosaic was delayed. Non-porous tissue culture plastic

does not form the mosaic at all (Figure 5.14)b. There are observed dif-

ferences in the ZO-1 signal to background noise ratio in Figure 5.15; the

mosaic stains on the nanoporous substrate appear less clear. While dif-

ferent types of objectives (water and oil) were used for imaging, this could
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Figure 5.14: ARPE-19 ZO-1 Expression on npMgF2 and TCP. (A) P27 cells grown
on freestanding npMgF2 and the surrounding region show a ZO-1 mosaic. (B) Brightfield
composite image of cells grown on tissue culture plastic, lacking a ZO-1 mosaic. (inset)
DAPI and ZO-1 stains alone.



CHAPTER 5. RAMAN-SILENT MGF2 NANOMEMBRANES 161

20 μmnpMgF2 Window
Green – ZO-1
Blue - DAPI

Polyester Transwell 40 μmA B

Freestanding Bulk

Figure 5.15: ARPE-19 ZO-1 Expression on (A) npMgF2 (40x oil objective) and (B)
Polyester Transwell (40x water objective).

be a difference in staining as only a small part of the npMgF2 is permeable

and we observe differences between the free-standing and bulk parts of

the substrate.

To confirm similar ZO-1 expression on µpMgF2, a confluent monolayer

of ARPE-19 cells was cultured over 4 weeks on µpMgF2 nanomembranes

and polycarbonate Transwells, as well as non-permeable tissue culture

plastic controls and then stained for the tight junction protein (ZO-1) to

evaluate cell morphology. Figure 5.16 displays representative brightfield

imaging of the cells throughout the cell culture, showing that the cells on the

µpMgF2 nanomembranes can be seen as easily on a standard tissue cul-

ture plastic substrate, while the polycarbonate Transwell is mostly opaque

in this mode. The striation in lighting on the µpMgF2 is created from re-
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Figure 5.16: P7, D5ARPE-19 Brightfield Images with Phase Contrast on Experimental
Substrates. The cells on the polycarbonate Transwell are not easily visible, but the cells
on the µpMgF2 nanomembranes are as visible as tissue culture plastic. 20x images, air
objective.

flections in the device and is not indicative of the clarity of the MgF2. The

cell density is less dense on tissue culture plastic than µpMgF2, even af-

ter 5 days of growth. This could be due to a few different factors, such

as a higher density of cells in the devices, or the nanomembrane sagging,

creating a lower height on which cells could settle, or cells actively migrat-

ing toward the more permeable region in the device. Therefore, conflu-

ence occurs in the nanomembrane devices a few days before that of the

other substrates, becoming contact inhibited. This may create differences

in cell maturity between the experimental substrates, but evaluated over

the course of a few weeks, these differences should be small.

Evaluating the ZO-1 stain alone (Figure 5.17), the cells grown on the

nanomembrane’s windowed region and outside it (Bulk MgF2) display sim-

ilar ZO-1 mosaics to that cells grown on polycarbonate Transwells. The

clearest imaging is on the non-permeable part of MgF2 substrate, which
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lacks much of the background stain not localized to the ZO-1 mosaic.

Compared to the Transwell, cells on the µpMgF2 chip have more orderly

mosaics. The expression of ZO-1 on the non-permeable regions of the

µpMgF2 chips may indicate a lack of adherence to the substrate, as mi-

cropatterned wells or textures could form pockets of a basolateral com-

partment for nutrition and secretion, thus creating the appearance of a

permeable substrate. These pockets could then be accessed through the

free-standing window region, allowing media exchange out of these areas.

We also observe a ZO-1 mosaic on the non-porous tissue culture plas-

tic substrates. This is unexpected as these cells do not usually show ZO-1

expression on these substrates [130]. However, there is some existing ev-

idence that confluent monolayers can express ZO-1 after 10 days of cul-

ture. Pasovic et al. [137] examines the culture and storage of ARPE-19

cells on glass coverslips and Nunclon � Multidishes at different tempera-

tures. Here, they culture cells over 3 days (control) and then additionally

store them for 7 days at varying temperatures. These cells demonstrate

ZO-1 mosaics of varying quality (Figure 5.18). Yoshikawa et al. [138] also

cultures ARPE-19 cells on poly-L-lysine coated coverglasses and exposes

the confluent culture to endoplasmic reticulum stresses. The controls show

a level of ZO-1 expression even without this stress.

We have unevenly observed ZO-1 expression on our tissue culture

plastic substrates. Evidence from the literature described above suggests

not all tissue culture plastic behave equivalently. Different manufacturers
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may apply a different coating to their substrates which may influence the

phenotype of cultured cells. Even though specialty plates exist that are pre-

coated with collagen or poly-l-lysine, they were not used here. This means

that we should use other metrics of cell phenotype and polarization, such

as molecular transport studies across the cultured cell layer and electri-

cal resistance characterization to verify the response of ARPE-19 cells on

MgF2 nanomembranes. Cell barrier permeability can be assessed through

small molecule transport with a known concentration of molecules (rang-

ing in size from 10 kD to 10000 kD) by introducing them to the apical side

of the cultured cells, then measuring the concentration of molecules that

reach the basolateral compartment. Similarly, the transport of charge car-

riers across the cell layer can be measured through direct electrical mea-

surements (transepithelial electrical resistance), or the whole system can

be modeled to extract relevant capacitive and resistive values (impedance

spectroscopy). These experiments remain to be performed in the future.

The composite ZO-1/DAPI stain reveals many more nuclei than can

be associated with the mosaic (Figure 5.19. Some of these nuclei bridge

the gap across tight junctions, indicating that there are multiple cell layers,

which can be normal in confocal imaging of cancer-derived epithelial cells,

as the tight junctions are apical to the nucleus. It is possible that these

additional cells were a contaminating fungal infection, though the visual

indicators of the media remained clear. However, it is possible that more

cells continued to crawl and pack over top each other, even beyond contact



CHAPTER 5. RAMAN-SILENT MGF2 NANOMEMBRANES 165

Figure 5.17: P9, D29 ARPE-19 Cells Grown on µpMgF2, TCP, and Transwell Sub-
strates Express ZO-1.
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Figure 5.18: ARPE-19 Cells grown on Nuclon Multidishes express ZO-1. Control
cells were grown for 3 days before being stained with ZO-1 (green) and DAPI (blue).
Temperature variants were stored for an additional 7 days before being stained. Adapted
from Pasovic et al. [137], Creative Commons License (CC BY 3.0).

inhibition. A higher density of nuclei is also observed on the tissue culture

plastic substrate and the Transwell, which indicate that it is not an effect of

the experimental nanomaterial alone. While this experiment shows a few

differences between the npMgF2 and µpMgF2 substrate, ultimately both

fabricated substrates were successful in creating ZO-1 expressing ARPE-

19 cells over 3-4 weeks of culture.

5.5 Raman-Mapping

5.5.1 Methods

Calu3 lung epithelial cells were deposited on silicon and npMgF2 nanomem-

branes and allowed to adhere to the substrate. These cells were chosen for

their easier attachment over ARPE-19 cells. Raman measurements were
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Figure 5.19: Multiple Cell Layers in µpMgF2 Culture Experiment. The presence of
manymore nuclei than mosaic boundaries indicates that there are more cells than a single
confluent monolayer would suggest.

made on cells using a bespoke Raman instrument (University of Notting-

ham). Raw spectra were processed using principal component analysis

(Matlab) to map biomolecules.

5.5.2 Results

An example Raman map of a cell on a pnc-Si membrane shows DNA and

RNA signatures localized to the nucleus and cytoplasm respectively. It

took over 2.5 hours to make a small map of this cell, using a 5 mW il-

lumination intensity. This is not ideal for making measurements of other

molecules that may have different localizations over time. Combatting the

silicon’s propensity to absorb the illumination light (Figure 5.1) necessitated
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Figure 5.20: Raman Mapping of RNA and DNA on pnc-Si.
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Figure 5.21: Raman Mapping of RNA on npMgF2. (A) Bright field image of cell fixed
on npMgF2. (B) Raw Raman map. The orange square indicates the same region by the
cell’s nucleus (100x70 pixels). (C) Principal component map, associated with RNA. (d)
Raman spectrum of point away from cell nucleus. The dual spectral peaks (indicated by
orange arrow) align with those established for RNA (783, 811 cm�1 [139]).

the move to new Raman-compatible materials (MgF2), while still maintain-

ing the porosity of the original template.

The Raman compatibility of the evaporated MgF2 material was estab-

lished by depositing Calu3 cells on npMgF2 substrates and making point

measurements that localized biomolecules to regions within each cell (Fig-

ure 5.21). We can see the bright field image of a cell with its nucleus as a

point of reference between each image. The rawRamanmap is associated

with more material in the observation volume and tracks with highlighting

the thicker nucleus-containing regions. Utilizing principal component anal-

ysis of the raw Raman map, we can observe a Raman signature associ-

ated with RNA, localized to areas around or within a cell’s nucleus. While

the cell culture was infected (reported by collaborators), we can still ob-
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serve distinguishable biomolecule signatures and correlate them with mi-

croscopic features in the cell. As higher illumination powers are available

for measurement, information can be obtained more quickly. The fabri-

cated npMgF2 scaffolds can tolerate up to 450 mW of laser power without

disintegrating, meaning that the primary barrier to quicker measurements

would be the amount of laser power the cells can tolerate. The thinness

of the nanomembrane (50 nm) contributes to the reduced background sig-

nal; the cellular component dominates over significantly less nanomem-

brane volume (approximately 5% of the cell’s volume), without regard to

the relative Raman cross-sections of the materials. Furthermore, it would

be difficult to measure any particular changes in Raman spectrum based

on the substrate’s structure as there is little material in the observation vol-

ume (compared to a 100 µm-thick MgF2 coverglass), evinced by the ho-

mogeneous background. Developing new µpMgF2 membranes after the

mechanical failures with npMgF2 led to delays in making Raman maps on

this material. Because of some technical difficulties with the microscope

in Nottingham and the delivery of the material, it was not possible to per-

form the same experiments with µpMgF2. Given the extensive validation

of the material properties of µpMgF2, we believe the initial experiments on

npMgF2 nanomembranes are representative of the results we will obtain

on µpMgF2.
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5.6 Challenges and Future Directions

As a Raman measurement will necessarily sample the different materials

in it’s observation volume, it has been difficult to maintain material purity.

Sending manufactured MgF2 nanomembrane materials to others has not

been trivial. The standard silicone-lined gel-boxes that are commonly used

to ship chips had the unintended effect of depositing a thin layer of a PDMS

substance on the membranes. To combat the outgassing of this material,

we developed a 3D printable chip holder model out of ABS plastic, in which

we could then insert individual chips (Figure 5.22). While usable, the ther-

moplastic is not ideal for these purposes, as it is prone to shed particles

after extrusion. A milled aluminum holder would offset these issues, but

the cost of the holder would exceed the cost of the chips.

Themechanical weakness of npMgF2 led us to develop thicker, µpMgF2

variants as a way to increase strength. The difference between the two

is modest, but ultimately practical. When shipping fixed cells on mem-

branes, the microporous membranes remain intact (2/3 chips), while no

nanoporous membranes survived in the same box (0/7 chips). However,

making the MgF2 membrane thicker led to it’s own host of challenges,

evinced in the new defect modes of failure. At the sub-micron scale, the

stresses of MgF2 most readily lead to cracking. Placing micropores on

the edges of the nanomembane windows may exacerbate these defect

modes; patterning micropores on the nanomembrane template away from
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A B

Figure 5.22: 3D Printed Storage Block. (A) Storage block insert designed for shipping
27 individual 5.4 x 5.4 mm chips in a gel-box. Beams between columns help prevent the
chips from being stressed by the roof of the box. (B) Example storage block made of
extruded ABS plastic without support beams.

these edges should help improve yield and strength.

The etch selectivity of MgF2 also provides a difficult fabrication chal-

lenge, as it is difficult to remove the material once deposited. The largest

pores in production on the silicon nanomembrane platform are 8 µm di-

ameters. If we were to try and make the nanomembrane even thicker for

more stability, this size will put an upper limit on the thickness of the ma-

terial. The larger pore size would also be a concern for cell attachment,

as larger pore sizes tend to have an adverse effect on cell adhesion. The

0.5 µm pore template size used in this work could ultimately have a ⇠1 µm

MgF2 maximum film thickness, with severely reduced porosity.

These challenges demonstrate that there is still a substantial process
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window for further improving the mechanical properties of these materials,

while still maintaining the desirable Raman-compatibility and porosity char-

acteristics. While there have been many complications, the membranes

have been useful to establish cell culture on these evaporated thin films,

which is a necessary first step before delving into more specific physiolog-

ical questions.

5.7 Conclusions

Wehave demonstrated the fabrication of freestanding, ultrathinMgF2 nanomem-

branes using NPN and microporous SiN membranes as a template. Fu-

ture improvements could be made to increase the mechanical strength of

these materials, such as adding a support structure to the freestanding

film. The new material can withstand higher illumination intensities, which

will lead to decreases in interrogation time for measurements made using

Raman spectroscopy. The new cytoscaffolds are biocompatible, and can

support cell culture for up to 4 weeks, allowing epithelial cells to develop a

healthy morphology. These nanomembranes will become even more valu-

able when experimental imaging can be combined with transport studies

on the cultured cells. Furthermore, the strategy used here can be extended

to create other new nanomembranes out of different materials.
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Chapter 6

Silicon-Based Nanomembrane Use
in Surfaced-EnhancedRamanSpectroscopy

6.1 Introduction

Thus far in this thesis, silicon-based nanomembranes have been used as

passive elements, as a structural guide for DNA or a cell culture substrate.

Their material and structural properties have been examined as parts of

a greater system that operates and senses biomolecules through other

means. However, a silicon nanomembrane itself can be used as an active

sensor [17]. This chapter details the structural, material, and functional

characterization of a new chemical sensor that relies on a hybrid silicon-

based nanomembrane structure to enhance Raman signals of bound an-

alytes. I begin by reviewing essential theory of Surface-Enhanced Raman

Scattering (SERS) based sensors.
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Figure 6.1: Surface Plasmon Illustration. Graphical illustration of plasmons in bulk gold
(A) and nanoparticles (B). (A) Bulk plasmons can be excited by an electron beam (bottom),
while PSPPs are excited by the evanescent field of light (top). (B) LSPs are excited by
light propagating in free space or dielectric media. (C) The LSP inAu nanoparticles can be
modeled, as a first approximation, like a spring-mass harmonic oscillator, where the free-
electron density is the equivalent of the mass. Reprinted by permission from Copyright
Clearance Center: IOP Publishing, ? ], Copyright 2017.

6.2 Surface-EnhancedRamanScattering (SERS)
Theory

Spontaneous Raman, described in Chapter 1, is a useful technique for

gathering information about the types of material in an observational vol-

ume. However, the effect is very small and inefficient. In the early 1970s,

stronger Raman spectra were observed when pyridine molecules were

imaged on roughened silver electrodes [140]. Given the constraints of

spontaneous Raman measurements, this seemed impossible [141]. At the
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time, other researchers expected ⇠25 cps (991 cm�1) for 1 W of laser

power; Fleischmann et al. [140] measured ⇠500-1000 cps for 0.1 W of

laser power [141]. This phenomenon was debated for a few years; SERS

was first observed in 1973, but not correctly understood as SERS until

1977 [142]. The anomalously strong signals were not wholly a product of

surface roughness, as Jeanmaire and Van Duyne [142] showed there were

optimal roughening conditions for this effect, producing an enhancement of

⇠105-106. Around the same time, Albrecht and Creighton [143] indepen-

dently showed that the increase in surface area, and thus more pyridine

molecules in the observation, could not solely account for the stronger Ra-

man spectra gathered.

Understanding the basic mechanisms thought to be behind SERS re-

quires knowledge of electromagnetic theory. To begin, phenomena known

as surface plasmons are essential to generating a SERS response. A plas-

mon is a collective oscillation of electrons in a metal [? ]. These oscillations

can be induced by other electromagnetic fields (light) along the surfaces of

metals, which then is known as a surface plasmon polariton (SPP). Polari-

ton oscillations can travel along the surfaces of metals, but not in the bulk

volume of the film (Figure 6.1A). If the metal film is thin enough (sub 100

nm), the plasmon does not propagate and instead is a localized surface

plasmon (LSP, Figure 6.1B).

The layer in Figure 6.1 is made of a precious metal, such as copper,

silver, or gold, which have been valued since antiquity for their brightness
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and shine, hereafter referred to as ”coinage” metals. The reason for their

appearance is their strong reflectance of light across the visible spectrum.

This is due to a strong negative real-component of the refractive index for

thesematerials, which is important to generating plasmons. Once the com-

plex refractive index (real and imaginary components) of the material is un-

derstood, Maxwell’s equations can be solved to determine the electric field

around nanostructures. However, there are only a few analytical solutions

for simple geometries and most calculations rely upon numerical analysis

[144].

A common simplifying assumption is to treat the field as static, which is

an excellent assumption for features much smaller than the wavelength of

incident light. For visible light with 500-600 nm illumination, the assumption

is valid for ⇠10 nm features, though this simplification is often used for

larger features [144]. In the case of a metal 2D cylinder surrounded by a

medium, the solution for the strength of the induced dipole’s moment (P )

constrained by the shape of the cylinder is approximated as [144]:

P /
✓
✏(�)� ✏m
✏(�) + ✏m

◆
(6.1)

where ✏(�) is the wavelength dependent refractive index of the metal

and ✏m is the refractive index of the medium. As the coinage metal has a

negative real-component to the refractive index, this portion can cancel out

with the medium’s refractive index in the denominator, vastly increasing the
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strength of the field. For a metallic 3D spherical particle surrounded by a

medium, the equation is very similar [144],

P /
✓

✏p(�)� ✏m
✏p(�) + 2✏m

◆
, (6.2)

with scattering (Csc) and absorption (Cabs) cross-sections given as [145]:

Csc = ⇡a2 ⇤ 8

3
(ka)4

����
✏d � 1

✏d + 2

����
2

(6.3)

Cabs = ⇡a2 ⇤ 4ka Im


✏d � 1

✏d + 2

�
(6.4)

where ✏d = ✏p(�)/✏m, a is the particle radius, k is the wavevector in the

medium. Thus, the LSP resonance will occur for differently sized struc-

tures at different wavelengths as long as the boundary conditions along

the structure are met (the denominator term in Equation 6.1 and 6.2). The

intensity enhancement factor (IEF ) of the field is then given as

IEF (r,!) =
|E(r,!)|2

|E0(r,!)|2
, (6.5)

a ratio of the induced (|E|2) to native intensity (|E0|2). As the intensity in

the region is proportional to the square of electric field, small increases in

the electric field can create a much stronger intensity enhancement factor.

If the surrounding medium changes from lower to higher refractive index

(i.e. air to water), the resonance is red-shifted to accommodate the in-
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dex shift [144]. For more complicated structures, the interaction between

many different LSP resonances determines the overall LSP response of

the structure. The spectrum of electromagnetic enhancements depend on

the shape and size of individual particles and on the gaps between them

[146].

If we consider a perfectly smooth, flat, coinage metal plate instead of

a sphere or cylinder, IEF < 1 for normally incident light, meaning that the

electric field is weaker, and the intensity in the region is quenched [144]. If

the incident light is angled, these photons can create regions of enhance-

ment as a traveling wave (SPP) or localized plasmon if the metal plate is

thin (LSP). In reality, no metal surface is perfectly smooth. LSPs can be

also assigned to features on a curved metal surface, which can have com-

plicated boundary conditions, creating complex enhancements near these

features. While the solution for particles can sometimes be solved, the

solutions for arbitrary surfaces is not so simple.

With regard to SERS, the increase in a Raman scattering event at

roughened surfaces is caused by two different factors: chemical or elec-

tromagnetic enhancement [147]. The total enhancement is then

ISERS ⇡ SEFEM ⇤ SEFCE, (6.6)

where SEFEM and SEFCE are the electromagnetic and chemical en-

hancements respectively. The electromagnetic enhancement stems from
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the organization of the SERS sensor surface. Increasing the electric field

around an analyte molecule is analogous to increasing the power of the

laser that is illuminating the molecule [144]. As both the incident photon

and scattered photon are in the presence of the increased intensity, they

are both assumed to be enhanced by the same field, leading to an electro-

magnetic SERS enhancement factor (SEFEM ) [144]:

(SEFEM) = (IEF )2 =
|Einit(r,!)|2

|E0(r,!)|2
⇤ |Escat(r,!)|2

|E0(r,!)|2
=

|E(r,!)|4

|E0(r,!)|4
. (6.7)

Some electromagnetic enhancement factors have been reported as

high as 108-1011 [147]. The chemical enhancement is directly related to

the bond structure of the analyte molecule and its electronic interaction

with the coinage metal. Given the large non-linear variation in electromag-

netic enhancement with a strong dependence on structure and position of

analyte molecules, the chemical enhancement factor of SERS might be

more attractive as a stable source of enhancement. Some chemical en-

hancement factors have been reported as high as 103 [148]. However, it is

difficult to appreciably control the chemical enhancement factor of SERS

in a general way, as this is reliant on the analyte bonding event, analyte’s

chemical structure, and light-induced charge transfer [149]. Therefore, the

much larger SEFEM is most commonly considered dominant, along with

the |E|4 scaling that goes with it.
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The theory described above is not exhaustive. There are many other

detailed mechanisms that can contribute to SERS, such as analyte orien-

tation and surface-selection rules for nanostructures. However, this theory

provides a basic understanding of the mechanism used to make a SERS

sensor. The following work will focus on the structural enhancement pro-

vided by SERS substrates.

6.3 SERS Detection Substrates

6.3.1 Roughened Thin Films

The original discovery of SERS on a roughened silver film [140] has led to

further investigation of the enhancements provided by roughened coinage

metal films. The nanoscale features required for SERS are produced with

simple wet etches (dependent on the metal, nitric acid, ammonium hydrox-

ide). These etches can produce surface roughness on the order of Rq = 1

µm and structures that have ragged leaflets (Figure 6.2). The heterogene-

ity of the leaflets is useful to create a critical feature within which an analyte

can bind and be enhanced. Given the large variance in structure, it is diffi-

cult to reproduce a consistent enhancement; 103-108 enhancement factors

are reported [150]. The choice of material is often governed by what can

be detected. Silver has the strongest extinction across the visible spec-

trum (used in mirrors), however, it can tarnish, and become poisonous to
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Figure 6.2: Roughened Silver Film. Effect of the different chemical etching treatments
on surface morphology of Ag metal surface as seen under scanning electron microscope
(SEM): (a) native as-flattened Ag wire; (b) 30 s NH4OH; (c) 10 s HNO3; (d) 2 m HNO3;
(e) 30 s NH4OH followed by 10 s HNO3; and (f) 30 s NH4OH followed by 2 m HNO3.
Reprinted from Wijesuriya et al. [150], Creative Commons License (CC-BY-4.0).



CHAPTER 6. SILICON-BASED NANOMEMBRANE USE IN SERS 183

biological samples. Gold is very inert and used widely with biological sam-

ples.

6.3.2 Metallic Nanoparticles

Figure 6.3: Au Nanoparticle Electron Microscopy. Upper: TEM images of various Au
NPs dried from as-synthesized aqueousAu NP colloids. Lower: the corresponding radius
histograms with fitted Gaussian distributions (gray dashed line). The scale bar is 100 nm
for all TEM images. Reprinted with permission from Yang et al. [151]. Copyright (2017)
American Chemical Society.

Nanoparticle plasmons have been utilized for centuries in stained glass

windows. Medieval glassworkers found that suspensions of gold particles

created within molten glass changed the color of the glass, allowing them

to create deep shades of red [? ]. The reason for this change is the plas-

monic behavior of gold nanoparticles. The nanoparticle has a strong ex-

tinction coefficient that is related to the oscillatory resonance of electrons

on the surface of the nanoparticle when illuminated (Equation 6.2). Further
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analysis in our modern era showed that the nanoparticle shapes and sizes

were extremely influential in modulating the extinction of solutions contain-

ing them. Nanoparticles sizes (i.e. 5-100 nm) can produce a range of col-

ors, and changing the shape of nanoparticles from spherical to cube-like

had similar effects [152]. As such, using these resonances is an effective

way to create regions of electromagnetic enhancement.

The chief utility of the metallic nanoparticles as SERS substrates is that

they are easier to create, obtain, and use than other methods. They can be

very versatile and incorporated into many different kinds of experiments by

simply adding a known concentration of particles to substrates with differ-

ent structures. Researchers can assemble or immobilize nanoparticles on

a surface (Figure 6.3) and then introduce the analyte, or they can use the

nanoparticles in suspension and bind the analyte through surface chem-

istry. Colloidal Au nanoparticles can be dried down into dense populations

which can then be infiltrated with biological materials [153]. Even polymeric

membranes can be infiltrated with dense numbers of nanoparticles [154].

However, large aggregates of nanoparticles have worse electromagnetic

enhancement profiles than dimer or trimer configurations [155]. Nanopar-

ticles themselves can be difficult to arrange on a surface, causing a lot

of heterogeneity, and consequently the strongest enhancement is proba-

bly originating from a subpopulation of nanoparticles [156]. This limitation

is most evident by examining the enhancement on multiple samples or at

multiple points within a sample. As a way to make the enhancement more
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Figure 6.4: Tunable Optical Properties of Gold Nanorods by Changing the Aspect
Ratios. Gold nanorods of different aspect ratios exhibit different dimensions as seen by
TEM (A), in different color (B) and different SPR wavelength (C). Adapted from Huang
and El-Sayed [158] with permission from Elsevier. Copyright 2010.

consistent, researchers have coated particles to fix the distance between

dimers [157]. Examining the resonances and enhancement profiles of Si-

coated Au nanoparticle dimer and trimers suggests that the enhancement

factor of these structures is relatively consistent, but the LSP resonance

can shift widely across the visible spectrum [157].

Considering the size of spherical nanoparticles alone, Rayleigh scatter-

ing describes the elastic light scattering of particles that are much smaller

than the wavelength of light, while Mie theory describes particles that are

closer in size to the wavelength of light [145]. These models can then
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be used to predict and tune the properties of nanoparticles that are fabri-

cated. Some have shaped and sculpted particles to be rod-like for particu-

lar extinction characteristics (Figure 6.4). Non-spherical nanorods exhibit

different resonant peaks as a consequence of polarization-dependent illu-

mination. For a non-spherical long rod illuminated with light parallel along

its length, the region of largest enhancement is localized to the longitudinal

ends of the structure [152].

6.3.3 Metallic Nanostructures

Metallic nanoparticles as separate elements are most commonly used in

SERS. However, there are other ways to generate a LSP that can provide

enhancement by patterning other plasmonic metals. Electron-beam litho-

graphic patterning has existed for many years in the semiconductor indus-

try. Taking advantage of the ability to draw nanometer-sized features and

position them with nanometer-sized tolerance, it is possible to surround a

small spot with separately patterned gold features (Figure 6.5). This is ac-

complished through a gold deposition, then e-beam patterning, and finally

the use of a lift-off process or plasma etching of the gold layer to pattern

the surface. Developing relief patterns into inverted nanodiscs, pyramids,

and split-ring resonators created enhancement factors on the order of 105,

with gaps on the order of 50 nm.

Optical-lithography patterned substrates such as Klarite® (Figure 6.6)
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Figure 6.5: E-Beam Lithography Creates SERS-Active Structures. SEM images of
gold nanostructures fabricated with e-beam lithography combined with plasma etching.
(a) Pyramids, (b) discs, (c) cubes, and (d) split-ring resonators. Republished with permis-
sion of IOP Publishing, from Weisheng et al. [159], lightly adapted; permission conveyed
through Copyright Clearance Center, Inc.

provide another way to impose structure on the plasmonic metal surface

[160, 161]. By patterning square shaped wells onto a silicon wafer, a silicon

etchant (EDP) that preferentially etches certain planes in the wafer pro-

duces pyramidal wells with a 54.7� angle of decline. A subsequent metal

deposition produces grains of gold that line the sidewalls of the inverted

pyramidal structure, where analyte molecules can be introduced across the
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Figure 6.6: Klarite® Structure. a,b) FE-SEM images of Klarite® and c) Gold coated
slide. Reprinted by permission from RightsLink Permissions Customer Service Centre
GmbH: Elsevier Procedia Engineering, Radzol et al. [160], Copyright 2012.

population of wells. Simulated smooth thin films of gold suggest that the

greatest enhancement of the film occurs at the apex of this structure [160],

though this could still occur for the real particulate structures, as agglom-

erates would be in close proximity to each other at the apex. In contrast,

a simple gold coated glass slide does not have this additional microstruc-

ture, even though individual grains of gold are similarly sized (Figure 6.6c).

Adding the additional microstructure effectively expands the surface area

of the Klarite® sensor for random AuNP enhancements, in addition to the

enhancement at the bottom of the well.

Another strategy to create closely spaced plasmonic structures involves

using another membrane as a template [162]. Anodized aluminum ox-

ide (AAO) nanomembranes can have wall thicknesses less than 10 nm

in width. This tiny gap between features is preserved during manufactur-

ing a sensor; patterned gold and subsequent removal of the AAO tem-

plate produces gold-capped nanopillars with an enhancement factor of 108
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Figure 6.7: SERS Nanopillar Array. {d, s} represent the size and spacing distance
of the nanopillar array. (m-p) Cross-sectional SEM images of gold/PC nanopillars arrays
with {d, s} = {90, 20} nm, and the height (h) of the pillars are (m) 30 nm, (n) 60 nm, (o) 90
nm, (p) 120 nm, respectively. The scale bars represent 400 nm. Adapted with permission
from Liu et al. [162], Creative Commons License (CC BY 4.0).

on average and 18% standard deviation. The semiregular spacing of the

nanopillars is useful, but the heterogeneity of the supported particles is

the primary driver of electromagnetic enhancement (Figure 6.7). Here, the

maximum density of features is limited by the size and spacing of particles

in a planar array.

6.4 Challenges in SERS Sensing

Making successful SERS measurements of chemical analytes requires

some methodological consideration [144, 163].

• Substrates must be reproducible and robust over the course of mea-

surement. Checking the substrate with a monitoring standard is es-

sential.

• Analytes should adsorb on surfaces. This will provide enhancement

closest to the surface.
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• Ideally, analytes would have a higher SERS cross-section than other

competing molecules in the observation volume.

• Measurement intensity must be low enough to prevent unwanted

photochemical reactions that would contaminate the experiment.

• Quantitative measurements should be made by controlling for the

number of active SERS sites as well as averaging over many events.

Detecting analytes depends on many different factors (Chapter 1), but

having prior knowledge of molecules, surface chemistries, and measure-

ment equipment is very important. The need for reproducibility and robust-

ness is applicable to all sensing technologies, but in the case of SERS

sensing, is especially appropriate as the mechanism for enhancement re-

lies upon nanoscopic features that within even minute variations can cause

vast differences in performance. Averaging many individual events to-

gether and monitoring the strength of the measurement with a standard

enable some compensation for the large amount of variation that can oc-

cur with the substrate enhancement. Ideally, we would have well designed

structures that reliably provided enhancement; the challenges relate to

manufacturing these structures reliably to provide the same enhancement.
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Figure 6.8: Theoretical Silicon-Based Nanomembrane SERS Sensor. Metallizing a
silicon-based nanomembrane with a coinage metal (such as gold) would create an infilled
structure. Molecules can flow through the sensor and interact with the sensing metal
element on the nanopore walls.

6.5 Theoretical Silicon-Based Nanomembrane
Structure

An improved SERS sensor could be made by using a flow-through de-

tection strategy on a nanomembrane-based platform (Figure 6.8). SERS

is a very sensitive technique with even single molecule detections being

reported [164]. However, detection typically relies on molecules diffusing
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from the bulk solution into a limited active region. With a flow-through sen-

sor, low concentrations of analyte could be convected to the SERS active

region along the walls/ends of the nanopore, increasing the probability of

an analyte molecule encountering the active region. When considering

material properties, the use of gold prevents many of the problems asso-

ciated with silver coatings, such as oxidation which can change the shape

of the substrate surface and poor biocompatibility, while still providing en-

hancement across visible wavelength illumination. The fabrication of the

sensor relies on direct, line-of-sight fabrication techniques (sputtering or

evaporation), which would create gold surfaces that taper into nanopores,

while maintaining the nanomembrane porosity (Nanoporous Gold, npAu).

The organization of the npAu structure would also be more homogeneous

than a nanoparticle based detector due to the infilling process, creating

contiguous films across the whole sensor, but variations would stem from

the pore distribution of the underlying template, creating cones of gold with

a distribution of enhancement properties. The template contiguity with out

of plane features also obviates the need for the use of an adhesion layer,

like titanium, to increase the mechanical stability of the sensing layer. Ti-

tanium has been shown to vastly decrease plasmonic behavior at thick-

nesses above 2 nm, due to broadening of Au resonances and impurities

at the Ti/Au interface [165]. The silicon-based nanomembrane platform is

an excellent choice to create this sensor because it is closely related to

the material stack found on gold coated glass structures described above,
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Figure 6.9: Example Au-NP-Pitted SERS Structure. (a,b) Schematic representation of
the SERS enhancement mechanism on the nanoLCA (Nano-Lycurgus cup array) and the
NP-nanoLCA. (b) Denser hot spot formation by self-assembling NPs on the colorimetric
plasmonic substrate drives larger SERS EF. 3D-FDTD simulated electric field distributions
(|E|) on (c) the nanoLCA and (d) the NP-nanoLCA show that the NPs attached in the
nanocup effectively confine the electric field near the surface of the nanocup. Reprinted
from Seo et al. [166], Creative Commons License (CC-BY-4.0).

while providing dense nanofeatures that provide many separate opportu-

nities for enhancement.

Contrast this proposed structure with a recently published SERS sub-

strate (Figure 6.9) [166]. This sensor is formed much like the nanopillar

array in Figure 6.7, with imprint lithography forming the cup array, and

deposition of 9 nm Ti and 90 nm Au to form the sensing structure. The

design forms small divots approximately 100 nm across and 300-400 nm

deep, which are metallized with the sensing film stack. To improve the en-

hancement, the authors link nanoparticles to the surface using cysteamine



CHAPTER 6. SILICON-BASED NANOMEMBRANE USE IN SERS 194

(60-fold improvement over metal substrate alone). In essence, the authors

have created a way to increase the surface area of the substrate, allow-

ing more nanoparticles to form dimers, trimers, and aggregates that have

stronger enhancements. In our structure (Figure 6.8), we do not have such

long surfaces (50-100 nm vs 300-400 nm), but our density of nanopore

features is ⇠6-10x greater (60-100 pores/µm2 vs 9 cups/µm2) while main-

taining flow-through introduction of reagent.

6.6 Fabrication of NanoporousAuonNanoporous
MgF2

6.6.1 Initial Attempts

The first attempts at making a SERS substrate with our nanomembrane

materials was performedwith leftover NPN and freestanding npMgF2 mem-

branes from a development effort in making porous, Raman-silent cell sub-

strates (Chapter 5). We evaporated thin films ofMgF2 on top of a nanoporous

silicon nitride template (NPN, SiMPore Inc.) with various pore distributions

and then removed the template using reactive ion etch (Figure 6.10). While

this method of production can be characterized as a simple etch-release

process, it is not trivial to remove small amounts of silicon and maintain

an intact free-standing nanomembrane. In order to complete the sensor,

a single Au sputtering deposition (platen rotation, 15 mA) is performed to
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reach a thickness target of 50 nm, as depicted in Figure 6.8. Additionally,

the process can be adapted to produce thin freestanding versions of gold

using NPN alone as a template (Figure 6.11), but these films are very weak

and difficult to handle. Simple handling through the air can be enough to

rupture these membranes.

By evaporating only a thin film, the npMgF2 film maintains some poros-

ity, though some is lost due to infilling of the nanopores resulting in conical

features (Figure 6.12). These out-of-plane features appear to be substan-

tial, on the order of 10-30 nm protrusions from the NPN/MgF2 interface.

The high selectivity of MgF2 to the RIE etch means that these delicate fea-

tures remain even after the template has been removed. Viewed en face,

the npMgF2 remains open, though narrowed due to the infill. An exam-

ple quantification of this effect is realized by mapping and counting pores

in SEM micrographs [10], showing that the narrowing can be a substan-

tial shift (Figure 6.12). In this case, the average distribution of the NPN

template was 35 nm, and the fabricated npMgF2 distribution was 25 nm, a

change of more than 25%. This calculation is performed for a different set

of NPN/npMgF2 than the one that is shown in Figure 6.12. The nanoscale

npMgF2 structure will ultimately govern the placement of gold within the

cone.

To evaluate the SERS response of our structures, we chose to incubate

differently manufactured substrates with a reporter molecule (thiophenol)

and record its spectrum. The choice of thiophenol as a reporter molecule
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Figure 6.10: npAu/npMgF2 First Fabrication Flow. MgF2 relief pattern transfer, with
cartoon cross-sections of nanoporous films (not to scale). Beginning with a freestanding
film of nanoporous silicon nitride (NPN) (a), MgF2 is evaporated onto the substrate (50
nm, 0.1-0.3 nm/sec, 250�C, Platen Rotation), coating the porous substrate, resulting in a
hybrid material, (b). The film stack is then inverted and purified using RIE (90% CHF3,
10% Oxygen, 75 mTorr, 100 W), releasing a freestanding nanoporous film of MgF2 (c).
This general strategy can be applied to other materials, such as gold or platinum deposited
with sputtering. (d) Au is sputtered on the film stack (15-30 mA, 50-200 mTorr, 0.1 nm/sec,
Platen Rotation) to complete the sensor
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Figure 6.11: Freestanding npAu SEM Images. (A) Aerial image reveals that the npAu
membrane is porous enough to image carbon tape structures underneath the membrane
area. Arrow indicates a particle on the npAu membrane. (B) npAu cross-section shows
fabricated out-of-plane features.
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Figure 6.12: npMgF2 EM Cross-section and Aerial Image. (A) SEM cross-section of
a 50 nm MgF2 freestanding nanomembranes reveals conical ’volcano’ features, resul-
tant from pore infilling during the evaporation process. (B) Representative STEM image
of npMgF2 from a different NPN template depicts open nanopores (white ovals, large
pores). (C) Example pore distribution histogram of fabricated nanoporous MgF2 and NPN
template. Pore infilling of the NPN produces a smaller npMgF2 pore distribution, for all
substrate pore sizes. (B), (C) reproduced from Figure 5.2 for convenience.

is convenient as the thiol group binds well to gold, forming dense self-

assembled monolayers that experience chemical enhancement through

electronic coupling to the surface. Increasing the local concentration of

molecule in the ’hotspots’ of the enhancement substrate is useful to max-

imize the signal observed from these molecules, however, it is not totally

necessary; molecules can move in and out of the enhancement region

and be detected. A flow-through sensor created from this structure must

effectively balance the flow rate through the membrane and the dwell time

around the enhancement hotspots. As a matter of practicality, the self as-

sembled monolayers make it easier to observe consistent results through

the defined orientation of the molecules caused by steric packing. Exam-

ple spectra for this molecule are seen in Figure 6.13, where different sub-
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Figure 6.13: Characteristic Thiophenol Raman Peaks. SERS spectra of benzenethiol
(inset) acquired on IFAuNP (red), ANAuNP (blue), and NCAuNR (green) 3D SERS sub-
strates. � = 785 nm, P = 103 µW, and T = 10 s. Normal Raman spectrum of neat ben-
zenethiol obtained at � = 785 nm, P = 2.5 mW, and T = 1 s. Adapted from Kurouski et al.
[167] with permission of The Royal Society of Chemistry.
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Figure 6.14: npMgF2/npAu Initial SERS Performance Comparison. A) Raman (SERS)
spectra of benzenethiol absorbed on different substrates, imaged for all but bare gold at
10 s integration time and 2 mW laser power. Black: bare gold. Red: npAu upper side;
Green: npAu, template side. Cyan: Klarite® substrate. Blue: npAu/npMgF2, measured
from the template side. The bare gold spectrum was taken with 150 mW of laser power at
the sample and 20 s integration time. Arrows represent typical benzenethiol Raman vibra-
tional frequencies. B) SERS enhancement uniformity of benzenethiol 1075 cm�1 peak on
Klarite® substrate mapped at 1 µm/step, 50x50 pixels. C) SERS enhancement uniformity
of npAu/npMgF2, mapped at the same scale, providing much more even enhancement
across the entire field of view. Adapted from Pascut et al. [168].

strates were incubated with thiophenol (iFyber LLC = IFAuNP, AnSERS =

ANAuNP, Non-commercial nanorods = NCAuNR). Characteristic peaks at

1575, 1075, 1023, and 1000 cm�1 are observed on the SERS substrates.

Many gold sensing layers were created on npMgF2 and NPN substrates

with five 0.1 x 3 mm windows, including freestanding gold by itself (50 nm,

npAu), as described in Figure 6.12. To test the SERS response of free-

standing npAu and npAu/npMgF2 nanomembranes, thiophenol was ad-

sorbed onto a number of different substrates and measured using a con-

focal Raman microspectrometer (model 77200 Oriel, 1000 lines/mm grat-

ing, cooled CCD detector). Substrates were incubated with 4 mM thio-

phenol at room temperature for 1 hr to saturate the surface, then rinsed
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thoroughly with absolute ethanol. The illumination (2 mW, � = 725 nm,

Ti:Sapphire laser, Spectra Physics) was directed onto the sample using a

water-immersion objective (63x, numerical aperture 1.0).

Figure 6.14 summarizes the chief results of this process. A gold-coated

coverslide showed no appreciable spectral peaks. The freestanding npAu

measured on the flat surface (away from the nanovolcanoes, Red) per-

formed considerably worse than the measurement on the nanovolcanoes

(Green). Compared to a commercially available substrate (Klarite®, Cyan),

the spectra for thiophenol on npAu is similar. However, the best perfor-

mance is measured with the hybrid npAu/npMgF2 film stack on the trench

surface with the out of plane features. Characteristic spectral peaks of thio-

phenol (1000, 1025, 1075, 1575 cm�1) are taller than that of the Klarite®

sensor, as well as producing some peaks that aren’t obvious on the com-

mercial substrate (470, 695, 1475 cm�1), providing a 7-fold relative im-

provement.

Similarly, if spectra are gathered across the substrate surface, a map

of their enhancement uniformity can be gathered. Figure 6.14B shows the

enhancement uniformity of the 1075 cm�1 peak on the Klarite® substrate

with a few spots of larger enhancement that provide much more signal

compared to the rest of the mapped area. In contrast, Figure 6.14C shows

the npAu/npMgF2 is much more uniform, lacking any appreciable hot spots

(about 10x more uniform than the Klarite® sensor, calculated from the stan-

dard deviation of 100 x 100 spectra). This would lead to greater utility, by
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Figure 6.15: Rendered Height Maps of npAu Surface. (a) SEM aerial image of npAu on
NPN template. The white rings around nanopores are gold coatings on the sidewalls of the
template. (b) Intensity-height mapping of (a) produces 3d structure. There are hundreds
of nanofeatures within a 1 µm confocal spot that can contribute to a SERS effect. (c)
Cross-sectional view of (b). Out-of-plane gold nanocones are thought to conformally line
the surface of npMgF2 nanovolcanoes.

being able to reproduce measurements faithfully without regard to where

the measurement is taking place on the sensor, directly addressing the

need for invariant substrates mentioned in Section 6.4.

We hypothesized that the large density of features inside a single mea-

surement spot is essential to creating this uniformity. Figure 6.15 depicts a

simple height mapping of nanofeatures based on the intensity profile from

SEM images gathered of the out of plane features. There is a distribu-

tion of npMgF2 nanovolcano sizes and shapes (Figure 6.12) that provides

a gold attachment surface, which should conformally infill these surfaces.

The primary layers of gold coating should attach and migrate along these

sidewalls, eventually coalescing into thin films. As the fabrication process

continues, these thin films will taper into the nanovolcanoes (Figure 6.15B),

providing sharp discontinuities and potential regions of electromagnetic en-
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Figure 6.16: Electrochemical npAu Raman Measurements of Thiophenol. Pixel num-
ber correlates the Raman shift, 10 sec interrogation time. At baseline (black line), the
substrate experiences an applied voltage to attract thiophenol to the surface (red line).
The voltage is then reversed, which removes the thiophenol from the surface (blue line).
Inset: A gold coated npAu/npMgF2 chip.

hancement.

The contiguity of the sensing structure also permits electrochemical

modification of the sensor surface. Figure 6.16 demonstrates the ability

of the sensor to influence the binding of the sensing molecule, thiophenol.

The presence of characteristic thiophenol peaks are observed as an elec-

tric potential is applied to the substrate on the bulk part of the chip, away

from the sensing membrane surface. The contiguity of the npAu film allows

molecules to be attracted into the nanomembrane area, which are then de-

tected. When the potential is reversed, the characteristic thiophenol peaks

vanish.

This initial set of results was very encouraging. The hybrid npAu/npMgF2

structure outperforms the commercially available substrate in terms of uni-
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formity, while maintaining the ability to be manufactured in high volume

using standard semiconductor fabrication techniques. However, the pri-

mary flaw from this fabrication process is that the total yield of fabricated

npAu/npMgF2 chips was less than 10%. Most of the loss occurred during

the freestanding npMgF2 fabrication step. Chips with multiple nanomem-

brane windows often had one or two survive, but few chips had all windows

survive. Free, broken curls of membrane are often observed, indicating

that the stress is very high in the fabricated film. Other attempts to improve

the yield of the npMgF2 process were then considered, by evaluating me-

chanical strength and individual process yields.

6.6.2 Annealed Films

Figure 6.17 describes a fabrication flow that templates aMgF2 thin film onto

a NPN substrate utilizing an annealing process. We hope to improve the

mechanical strength of the first process flow by annealing the film stack

after a lower temperature evaporation, allowing defects or cracks that form

in the npMgF2 to be remediated. A similar RIE step is then used again

to remove the NPN template, leaving the freestanding film. Figure 6.18

depicts the features of a thin npMgF2 fabricated in this way, revealing that

the temperature of the annealing step can influence the underlying struc-

ture, causing fissures if the temperature is too high. Both films maintain

the nanoporosity of the template, however, the fissures seem to propagate
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MgF2

Figure 6.17: Annealed npMgF2 Fabrication. (a)-(c) MgF2 relief pattern transfer, with
cartoon cross-sections of nanoporous films (not to scale). Beginning with a freestanding
film of nanoporous silicon nitride (NPN) (a), MgF2 is evaporated onto the substrate (50
nm, 0.1-0.3 nm/sec, 20�C, Platen Rotation), coating the porous substrate, resulting in a
hybrid material. (b)-(c) The substrate is annealed in anAr ambient for 2 hrs at 600�C, then
inverted and purified using RIE (90% CHF3, 10% Oxygen, 75 mTorr, 100 W), releasing a
freestanding nanoporous film of MgF2 (50 nm thick). The out of plane volcano protrusions
are resorbed into the npMgF2 film during the annealing step. Data is repeated here for
convenience (Figure 5.2).

from pore to pore. A cross-section of the image shows that the nanovol-

cano features of the npMgF2 are absent, resorbed during the annealing

process. This was unexpected at the time, though in retrospect, not diffi-

cult to imagine. The npMgF2 nanovolcanoes, while easy to image, contain

only a small percentage of the mass of the npMgF2 thin film and would most

easily be absorbed. The mechanics at this scale are not heavily influenced

by gravity, rather, the surface tension of the hot film is a very likely mecha-

nism for resorption. The lack of out-of-plane features significantly reduces

the amount of internal area (20-40%) for gold attachment.

To evaluate the strength of the annealed fabrication flow, NPN mem-
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MgF2 Au

100 nm

A

B

C

Figure 6.18: Annealed npMgF2 Structure. (A) 600�C annealing promotes contiguous
npMgF2 thin film formation. (B) 700�C annealing leaves microfissures in the fabricated
npMgF2 film. (C) SEM cross-section of the material coated with a thin layer of gold shows
no nanovolcano features. The inset depicts the infilling of the Au film on the npMgF2.

branes of various square window sizes were converted into npMgF2 using

the process outlined in Figure 6.17. Thesemembranes weremanufactured

from 2 NPN wafers with similar pore sizes and porosities (34 nm, 14% vs.

37 nm, 15%) to control for any effects of the underlying pore distributions

on mechanical strength. Subsequently, Figure 6.19 characterizes the me-

chanical performance and yield of the fabricated npMgF2 films. By tracking

the numbers of chips that survive through each stage fabrication process,

we can see that the etching step causes most of the loss. Overall, 85% of

chips survived the annealing process, and 34%of chips survived the full an-
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Figure 6.19: Annealed npMgF2 Process Yield and Burst Pressure Data. (A) The etch
process is the primary driver of yield loss. TEM chips have four 0.5 x 0.5 mm square
windows. (B) Burst pressures were collected using controlled flows of nitrogen. Error bars
are 1 standard deviation. Certain window sizes have labeled burst pressures for clarity.
(C) npMgF2 windows were fabricated on two wafers with similar pore characteristics, with
data jittered to show similar distributions. Data is repeated here for convenience (Table
5.1).

nealing/etching process. The mechanical strength of surviving nanomem-

branes was evaluated by a burst pressure test. Nitrogen gas was flowed

through the porous films in a fixed jig while recording the pressure in the

gas line. As the active area of the npMgF2 nanomembrane increases, the

strength decreases. Membranes that have burst pressures greater than 5

PSI are generally suitable to use in liquid [4], which would mean npMgF2

window sizes should be limited to 100 µm squares in production. An alter-

native fabrication flow would be to deposit gold on the evaporated npMgF2

layer before removing the NPN template layer (Figure 6.10d before Fig-

ure 6.10b). Adding Au to the nascent film stack could also improve it’s

mechanical strength, but the gold layer itself is not particularly strong and

this has yet to be tested. This would also expose the gold sensing layer

to the same etch that is found in the freestanding npAu nanomembrane,
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potentially modifying the surface further.

6.6.3 SERS Loss on Annealed Films

While the overall yield of these sensors was much improved compared to

the first attempts tomanufacture the film stack (34% vs sub-10%), when ex-

amined for SERS activity using a thiophenol exposure as in Figure 6.14A,

the films were very poorly responsive, producing spectra like the freestand-

ing npAu substrate. It was thought that the nanostructure of the fabricated

npMgF2 was particularly important, specifically the out-of-plane nanovol-

cano features that would constrict the gold contained within them, and the

annealing process removes these features. However, reverting to the first

process that produced strong SERS responses (Figure 6.10) on a set of

newer NPN materials did not recover the previously strong SERS signal

observed. As the methods for evaporation and etching to produce the free-

standing npMgF2 had not changed, this warranted further investigation into

the properties of the NPN template.
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6.7 Structural Characterization of Fabricated
npAu/npMgF2

6.7.1 Surface Characterization

Even though silicon-based nanomembranematerialsmay have similar phys-

ical properties (on the scale of 10 nm), we have observed that their effec-

tiveness as SERS substrates can vary considerably. Each set of nanomem-

branes that are fabricated from a single silicon wafer are numbered and

designated as chips and material from that wafer (Wafer #, Material). Our

typical characterization of silicon-based nanomembranes relies on SEM/STEM

andmeasuring the aerial image of the pores directly. Figure 6.20 describes

the use of this technique on 1085 NPN, which was one of the first sub-

strates to be fabricated into npAu/npMgF2. Open pores are imaged as

white ovals, which after some light image processing via background cor-

rection and thresholding are measured [10]. Through this technique, we

lose much of the surface information about the silicon-based nanomem-

brane, such as the depth profile of the nanopores and the roughness of

the inner pore walls. In the current model, we assume the aerial image of

the thresholded nanopores is propagated with perfect fidelity through the

full thickness of the nanomembrane. We need to better understand the

sources of variation in our fabrication, and the surfaces of all the films in

this process are most likely important to the SERS effectiveness of the re-
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1085 NPN Background Correction/Threshold

BA C

Figure 6.20: SEM and PoreAnalysis of 1085 NPN Substrate. (A) STEM image of 1085
NPN. (B) Thresholded and outlined pores contribute to the pore histogram (C). Green
square indicates the size of the background correction.

1148 NPN 1148 NPN +15 nm Au

A B

Figure 6.21: NPNAnaglyph with +15 nmAu. (A) Native 1148 NPN anaglyph. (B) 1148
NPN metallized with +15 nm Au anaglyph. Each membrane was imaged from -14� to
+14�, in 2� increments. The anaglyph was formed by taking the +14� and +10� images,
aligning them, and assigning them to red and cyan color channels. Viewed with red/cyan
glasses, these images can provide the illusion of depth.

sultant structure. To better assess the quality of starting NPN templates,

over 20 different production runs of NPN were imaged using TEM. A sum-

mary of these techniques and results is found in Chapter 4.4.
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Given the infilled characteristic of the npMgF2 templated from NPN, it

is desirable to know how gold is localized to these surfaces when it is in-

troduced. Using the reconstructive techniques described in Chapter 4, the

nanofeatures imaged in Figure 6.21, display tiny Au nanoparticles (black

ovals) coating the walls of a NPN nanopore (Wafer 1148, 50 nm thick, 33.5

nm average pore diameter, 6.3% porosity). It is clear that these particles

appear at different heights within the nanopore. The major limitation of

these images is that the technique requires electron transmissive samples,

that is, samples that are thin enough to be observed with the TEM. Gold

is very electron dense, so even small amounts of gold are difficult to im-

age with this technique. Thicker amounts of gold in a plasmonic region of

interest are opaque using TEM (above ⇠20 nm). Thicker gold films could

be reconstructed using this tomogram reconstruction technique with SEM,

but the resolution is worse and cannot capture fine details (small gaps and

fissures) of the film inside the nanopores.

Assigning segments to different heights in the stack and knowing the

physical dimension of the NPN thickness allows us to characterize the size

and location of different nanoparticles in the pore. The STL file is then im-

ported into free animation andmodeling software (Blender 2.79c, ?iiTb,ff

rrrX#H2M/2`XQ`;f) for visualization purposes. Examining the Blender ren-

dered nanoparticle contours reveals a number of interesting things about

the structure of gold inside the NPN nanopore. A single 15 nm thickAu layer

deposition is not enough to form a stable continuous film, however, there

https://www.blender.org/
https://www.blender.org/
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Figure 6.22: Reconstructed AuNPs inside NPN nanopores. 1148 NPN was metallized
with +15 nm Au, then AuNPs were imaged, reconstructed, segmented and visualized
using the method described in Chapter 4. (a) Aerial image as seen in anaglyph. (b)
Cross-sectional view. (c) Stratified layers of gold form inside the nanopore.

appear to be banded patterns of deposition along the length of the pore,

indicating that there were contractions of a continuous film into these parti-

cles, during the nucleation phase of thin film growth. The nanoparticles are

not necessarily spherical, and some have complicated oblate shapes. In

the context of particle plasmons, the shape of the nanoparticle will directly

change it’s absorption characteristic [152]. In this reconstruction, spherical

nanoparticle diameters range between 5-25 nm, while the more compli-

cated oblate rods are 40-70 nm long, producing aspect ratios from 2-4.

This would lead to an extinction spectra that is maximized anywhere from

650-900 nm, along the longitudinal axis of the rods. However, this view is

very simplistic and does not account for the positioning of the gold inside

the pores, nor the ”crescent-moon” shape of gold following the contours

of the nanopore. Closely-spaced gold nanorods in parallel have already
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BA

Figure 6.23: Gold Nanoparticles Fill npMgF2 Nanovolcanoes. A) ⇠25 nm of gold was
sputtered onto a 50 nm thick npMgF2 substrate (fabricated from 1236 NPN), then bro-
ken and imaged using TEM. The viewing angle is approximately 45�. The bulk film is too
opaque to image properly, but the sidewalls of the nanovolcanoes contain dense nanopar-
ticle features. B) Even at thinly deposited thicknesses of gold, nanoparticles infill along
the whole sidewall of the nanovolcano.

shown to influence the extinction characteristic of neighboring nanorods

[169]. A 3D model of the electric field around these nanostructures in tight

confining nanopores is necessary to make better predictions.

Figure 6.23 depicts a npMgF2 substrate coated with gold. This mate-

rial was templated from 1236 NPN, creating a membrane with 25.6 nm

average pore diameter and 5.6% porosity. The npAu features inside the

nanopores are thought to control the SERS behavior of the sensor. A target

of 50 nm gold film is too dense to image properly, but some methodological

changes can be used to image thinner gold films. The line-of-sight fabrica-

tion of the gold film propagates into the pores and coats the sidewalls of the
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nanopores, providing another mechanism for adjusting the npAu surface

characteristic. By sectioning the npAu/npMgF2 sensor and observing the

sidewalls of the nanopores, some structure can still be observed even with

⇠25 nm Au thickness. As more gold is added, the separate nanoparticles

observed in Figure 6.21 tend to merge and becomemore consistent. There

appear to be small gaps between particles at the end of these nanovolca-

noes, much less than 10 nm apart, which would be potential hot spots for

electromagnetic enhancement. If the substrates in Figure 6.14 had small

nanoparticle tips at the end of the volcano in a ’halo-like’ structure (Fig-

ure 6.22), it would provide many opportunities for enhancement in each

nanopore. In Figure 6.23, there are 30-60 particles per nanopore, and at

least that many gaps between them. Combined with the density of features

in a resolved confocal spot (⇠1 µmdiameter, 1236 npMgF2 = 70 pores/µm2,

55 features), there are over 1650-3300 features in a single measurement

that could contribute to a measurement. This feature density could explain

the uniformity of measurement observed on these types of substrates.

As there are many nanofeatures integrated in a single SERS measure-

ment, the gold inside the pores may not be the only active element on the

npMgF2 sensor. Therefore, it is useful to consider the overall roughness of

the top surface parts of the membrane. Tomeasure the surface roughness,

we use Atomic Force Microscopy (AFM) which uses a small cantilever to

track position near surfaces. The samples were affixed to the AFM holder

with nail polish, and then immersed in DI water. Small scans were made on
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1236 npMgF2 1236 npMgF2 +50 nm Au

1236 NPN +50 nm Au1236 NPN

Rq = 0.32 nm
Rq = 0.89 nm

Rq = 0.51 nm Rq = 1.25 nm

Figure 6.24: AFM Roughness Scans of SERS Substrates.

the chip on the bulk part of the chip near the window; the thin windows were

too fragile to place into contact without tearing. Rq values describe the root

mean square average of height deviation taken from the mean image data

plane. In these images, the roughness values were calculated from ar-

eas that did not include any nanopores. The depth of the nanopore would

improperly contribute to height deviations of the thin films we measure.

Figure 6.24 describes the surface roughness of the npAu/npMgF2 sen-

sor at various stages of fabrication. As the starting substrate is relatively

smooth (1236NPN), adding subsequent layersmakes the structure rougher.
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Figure 6.25: Light Blockage Contribution of npAu/NPN SERS Substrate for Various
Thicknesses of Au.

The roughest surface is the final npAu/npMgF2 film stack. Comparing the

two SERS active conditions (NPN+Au Rq = 0.89 nm, npMgF2+Au Rq = 1.25

nm), both surfaces are rougher than what would be expected from the na-

tive substrates alone (NPNRq = 0.32 nm, npMgF2 Rq = 0.51 nm). However,

these values are an 1-2 orders of magnitude less than the roughenedmetal

surfaces used in SERS detection [148, 150, 170], indicating that the fea-

tures within the nanopores are probably responsible for electromagnetic

enhancement, not any roughness on the spans in between the pores.
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6.7.2 npAu Film Absorbance

Evaluating the absorbance characteristics of the npAu film would provide

useful information about the resonances over the visible spectrum where

we working. Some work has previously been performed examining the

transmittance properties of contiguous metallized silicon based nanomem-

branes in the context of SPR, where both the template and ambientmedium

affected the transmissive responses (Shome [24], Chapter 3). Transmis-

sionminima were calculated for single 15 nm or 30 nm nanoholes on pnc-Si

around � = 700 nm, though the effects of having real pore distributions min-

imized the magnitude of the peak. Other simulated stacks in Shome [24]

featuring a 30 nm nanopore in a 30 nm silicon film sandwiched between two

15 nm gold films produced large extinctions around � = 800 nm, however,

this would vary substantially by changing the geometries and thicknesses

of these features.

In this work, NPN templates (Wafer 1148) were sputtered with varying

amounts of gold (15 mA, 100 mTorr) and evaluated using a UV-Visible in-

tegrating sphere spectrophotometer (Konica Minolta, CM-3700A, Xe pulse

lamp) in air. An aperture was fabricated to hold 5.4 x 5.4 mm silicon chips

in the tool. After initial tool calibration (0% and 100%), baseline transmis-

sion measurements of broken windows were made, providing the actual

nanomembrane aperture. Then measurements of bare NPN substrates

were made, providing the base film stack, and then transmission measure-
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ments with intact Au films were gathered. Figure 6.25 depicts the amount

of light blocked by different gold film thicknesses. There is a small local

peak observed for all gold thicknesses at ⇠730 nm, which is similar to the

prediction found in Shome [24], however, the substrate is not the same

as what was previously simulated, using NPN instead of silicon. All of the

curves have similar shapes, but as the film thickness increases, the relative

proportion of the light blocked by the gold film compared to the template

increases.

6.8 Effects of Gold andMgF2 Thickness onSERS
Performance

6.8.1 Experimental Central Composite Design

We know that the thickness of a gold layer directly impacts the plasmonic

resonance of the film. Similarly, the size and shape of the nanopores

formed in the freestanding MgF2 film will change as the thickness of the

MgF2 changes. To investigate these two potential factors affecting SERS

performance at multiple levels, we can use a technique known as a Central

Composite Design (CCD). Figure 6.26 describes the experimental design

space. The experiment is centered on a hypothesized optimum for SERS

performance, and then the testing space is expanded orthogonally along

each of the factor conditions. The value of the CCD is that it reduces the



CHAPTER 6. SILICON-BASED NANOMEMBRANE USE IN SERS 219

Total Pore Occlusion

35353535

14

35

56

0
14

35

56
70

14

35

56

3535

14

35

56

0
14

35

56
70

14

35

56

3535

14

35

56

0
14

35

56
70

14

35

56

35

0

20

40

60

80

100

120

0 20 40 60 80 100 120

M
gF

2
Th

ic
kn

es
s 

[n
m

]

Au Thickness [nm]

SERS Performance

Figure 6.26: Central Composite Design of Au Thickness and MgF2 Thickness for
npMg2 Thiophenol SERS Response. Numbers adjacent to points on the grid are targeted
MgF2 thicknesses.

number of experimental combinations to be tried, while still investigating

the full range of the factors. A full 52 factorial design would have 25 com-

binations, but our CCD has only 13. The efficiency is gained by omitting

the areas of the design where extreme combinations of the factors occur

(max+max, max+min, min+max, min+min). This leads the experimental

space to appear ’diamond-like’, rather than the square in the case of the

full factorial design. If other factors are considered, such as the starting

NPN template distribution, the efficiency gains are even higher. The state

diagram in Figure 6.26 shows a hypothetical area at which all the pores will
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be occluded by the combination of gold and npMgF2 thin films. The CCD

also avoids this region. By interpolation, we hope to observe an optimum

in the SERS performance of the npAu/npMgF2 sensor.

6.8.2 Fabrication Characterization

Figure 6.27 displays the resultant manufacture of npMgF2 chips for the

CCD described in Figure 6.26. MgF2 films were evaporated on NPN chips

in 5 separate runs, and released using RIE as described in Figure 6.10.

The format of these 1236 NPN (50 nm thick) chips was nine 50 x 50 µm

square windows, with 49.5 nm average pore diameter and 25.3% poros-

ity. Each of the films have different color viewed under white light due to

the varying thickness of the deposited thin film. These colors match well by

comparisonwith simulation (?iiTb,ffrrrX7BHK2i`B+bX+QKf`27H2+i�M+2@+�H+mH�iQ`)

usingmixed polarization, 0� incident light for anAir-MgF2-Si3N4-Si film stack;

relative maxima at violet wavelengths (360-380 nm) in the reflected spectra

occur for 50 nm and 70 nm MgF2 thicknesses which contribute to the pur-

ple/blue colors at these thicknesses. While each of the depositions were

targeted at certain evaporated thicknesses for the CCD outline in Figure

6.26, the produced thicknesses were slightly different, but sufficient to cap-

ture the spread of the experimental design.

Figure 6.28 depicts representative TEM micrographs of the fabricated

npMgF2 chips. As the deposited thin film thickness increases, the porosity

https://www.filmetrics.com/reflectance-calculator
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Figure 6.27: CCD npMgF2 Fabricated Chip Colors. npMgF2 of different thicknesses
produce different colors when illuminated with white light due to thin film interferometric
effects on top of the 50 nm NPN + Si substrate. Yellow-brown (10 nm), brown (30 nm),
purple (50 nm), blue (70 nm), and yellow-gold (120 nm) were observed in room light.
Spectra were simulated (?iiTb,ffrrrX7BHK2i`B+bX+QKf`27H2+i�M+2@+�H+mH�iQ`) us-
ing mixed polarization, 0� incident light for an Air-MgF2-Si3N4-Si film stack by varying the
MgF2 thickness. Relative maxima at violet wavelengths (360-380 nm) occur for 50 nm
and 70 nm MgF2 thicknesses.

https://www.filmetrics.com/reflectance-calculator
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10 nm npMgF2

50 nm npMgF2

1236 NPN

120 nm npMgF2

Figure 6.28: CCD npMgF2 TEM Aerial Images. Pores become more occluded as the
thickness of the npMgF2 increases.
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of the membranes decrease due to infilling along the substrate pore walls.

The pore structure also changes as the infilling occurs, becoming more

jagged and irregular. The TEM imaging also suffers as the thickness of the

sample increases.

A B

C D

Figure 6.29: CCD npMgF2 Structural SEM. False colored. (A) Cross-section of 1236
NPN (purple), 50 nm thick npMgF2 (blue), and 50 nm thick npAu (yellow). (B) Viewed
from the NPN template side, the npAu has small cones of gold, infilling the npMgF2. (C)
1236 NPN etched for 40 seconds shows a high degree of pore merging. The npAu film
conforms to the irregular shape of the pores. (D) 1236 NPN etched for 30 seconds show
wider pores, and the npAu fills this pattern faithfully.

Figure 6.29 depicts representative SEM images of npAu/npMgF2 and

npAu/npMgF2. The false color helps outline the different materials in the
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film stacks. The npAu is shown penetrating the npMgF2 layer along the ir-

regular cuts of the cross-section; they are the inner surfaces of gold cones

filling the nanopores. Similarly in Figure 6.29B, the npAu layer is delami-

nated and the gold cones are revealed. 6.29C, D have npAu templated on

top of 1236 NPN that has been further etched and thinned to create wider

pore distributions. The merged pores create tortuous shapes that appear

to support the adhesion of gold to NPN, without the need for a separate

adhesion layer.

6.8.3 Detection of Thiophenol onNanostructuredNanomem-
branes

Partially etched silicon-based nanomembranes would produce a different

pore distribution and surface than the original template and thus might im-

pact some of the SERS activity inside the pores. Figure 6.30 displays thio-

phenol SERS spectra collected from npAu/NPN membranes. A simple ra-

tio of the signal to the average background level (SAB) was used as a met-

ric for evaluating the strength of SERS response. The strong characteristic

peaks of thiophenol are observed (1575, 1075, 1023, and 1000 cm�1), but

the smaller peaks are not present as in Figure 6.14. Each of the partially

etched membranes is similar to unetched NPN, indicating that larger pore

diameters alone may not be helpful in recapturing stronger SERS activity.

However, by partially etching the NPN templates, we reduced the internal

surface area of the nanomembrane, thus reducing the deposition area for
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Figure 6.30: CCD 1236 npMgF2 Partial Etch SERSActivity. Thiophenol was incubated
on npAu/npMgF2 (50 nm/ 50 nm) formed on partially etched NPN templates, display-
ing only weak SERS activity (� = 725 nm, 10 s integration, 2 mW). The signal-average-
background ratio for the 1075 cm�1 peak of thiophenol is calculated. The npAu/npMgF2

produced from a partially etched substrate (1.48, 20 s) shows a small improvement over
a baseline NPN template (1.35, 0 s).

MgF2 and Au, which could confound the pore distribution/size impact on

the sensor’s performance.

A typical result from the CCD is shown in Figure 6.31, where the per-

formance of the npAu/npMgF2 is evaluated against npAu/NPN made from

the same template. For all npAu/npMgF2 combinations, the npAu/NPN had

stronger SERS performance. However, given imaging conditions similar to

Figure 6.14, the performance is diminished, below Klarite® and more in line

with freestanding npAu. Comparing these two structures indicates that the

npMgF2 or NPN substrate had little effect on the SERS performance for

this amount of gold. At a similar deposited gold thickness, the inner struc-
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Figure 6.31: 1236 NPN Template Stronger SERS Than npMgF2. Thiophenol spectra
are displayed for 1236 npAu/NPN and 1236 npAu/npMgF2 (� = 725 nm, 10 s integration,
2 mW).

ture of the nanopore governs the npAu cones that form, which should be

contiguous above 30 nm, and nested particles below 30 nm, based on pre-

vious TEM imaging (Figure 6.23). All npMgF2 templates have smaller pore

distributions than the template NPN due to infilling, as well as having more

irregular shapes, and this would be the chief difference in the contours of

gold cones that form inside the nanopores of each material. In this case,

wider template pores seem to give better SERS performance.

Figure 6.32 displays the SERS response characteristics for the CCD.

Using ametric of SAB� 1.2, thiophenol can be detected on both substrates

with these imaging conditions. The fact that the response characteristic is

not the same shape for each substrate type demonstrates that the SERS

response is not affected by npAu alone, rather, there is be a significant in-

teraction between the gold layer deposited and the substrate. The nanos-
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Figure 6.32: CCD 1236 NPN and npAu/npMgF2 SERS Response Characteristics.
The signal-average-background ratio for the 1075 cm�1 peak of thiophenol is calculated.
The NPN has a stronger overall signal/background relationship, but is maximized at a
different thickness of gold than the 10 nm npMgF2, indicating that the SERS response
can be influenced by the underlying layer. However, for a consistent thickness of gold,
the deposited npMgF2 thickness does not influence the SAB ratio.

tructure of the nanomembranes impacts the SERS response, producing

better SAB ratios at different optimums. For a thinner level of gold depo-

sition, the npMgF2 based sensor has a marked improvement (SAB = 1.56

vs 1.22 avg). The same gold thickness produces the opposite effect for

the NPN based sensor, providing a relative decrease in SERS response

(SAB = 2.36 vs 2.11). Based on previous TEM images, the npAu in the

nanopores may be incomplete cones of gold or stratified oblate nanoparti-

cles, but the fact that the substrates differ in characteristic indicate that the
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gold structures do not behave the same in each substrate material.

However, measured near the SAB optimum of gold thickness for NPN,

the SAB of npAu/npMgF2 is not impacted by the underlying changes in

pore structure, remaining flat from 10-100 nm. We designed the CCD to

be centered on a theoretical optimum for both gold and MgF2 thickness

factors, but this result indicates that we have not found an optimum peak

along the central part of the design. If the SERS structure depends on mor-

phological characteristics in fabrication that aren’t linear (npAu nanocones

vs npAu oblate nanoparticles), this design could be too broadly spaced to

find it.

6.8.4 Detection ofMercaptans onNanostructuredNanomem-
branes

Thiophenol is not the only molecule that can be detected on npAu sub-

strates. Other molecules closely related in structure can be detected, such

as mercaptans. These molecules are more interesting because they are

used as additives in the food processing industry. Additionally, they are

closely related to the thiophenol standard we have been using as a reporter

molecule; the benzene ring and the positioning of the thiol group for gold

attachment are key differences. After incubation with a 1236 npAu/NPN

sensor, Figure 6.33 displays the results of detecting a variety of mercaptan

compounds on separate chips. This displays the utility of SERS as a gen-

eral chemical sensor; each of the mercaptans has a different Raman spec-
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Figure 6.33: Mercaptan Detection via SERS on 1236 npAu/NPN. Mercaptan Detection
on 10/50 nm thick npAu/NPN. 2-Methyl 3-Furatinol (roast-beef), benzyl mercaptan (garlic-
like), furfuryl mercaptan (coffee flavor), and phenylethyl mercaptan (meat-like) have peaks
that can be detected 20% above the background signal level.
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tra. Ideally, spectra from mixtures of molecules could be identified using

principal component analysis and measured quantitatively. Here, we can

detect many separate mercaptan peaks by using a metric of SAB � 1.2.

The closest related molecule (by structure) to thiophenol, benzyl mercap-

tan, displays several peaks with a maximal SAB of 1.6, while phenylethyl

mercaptan only differs by a single bond length and only one peak with SAB

of 1.3. The furfuryl compounds have more complicated spectra compared

to the benzene-ring containing mercaptans, which given the level of noise

in the signal, makes only a few peaks available at our metric level.

6.9 Challenges and Future Directions

In this chapter, we have created and characterized silicon-based nanomem-

brane chemical sensors that could be used in a flow-through configuration.

SERS detection is attractive because it has the potential to be used across

many different analytes with excellent sensitivity.

However, there is still a need to examine the characteristics of npAu on

silicon-based nanomembranes. While modulating npMgF2 and npAu layer

thicknesses alone has not yet recovered the original performance observed

in Figure 6.14, both the template pore distribution and npAu surface con-

figuration should be tested in a similar way. There have been difficulties

in recreating material with the characteristics of Wafer 1085 NPN (50 nm

thick, 67 nm average pore size, 60 pores/µm2, Figure 6.20). This material
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Unetched 10 s 20 s

30 s 40 s

Figure 6.34: 1257 NPN Partial Etch TEM Study. RIE was used to thin the baseline
nanomembrane and widen pores from their baseline size (57 nm average pore size, 62
pores/µm2) and thickness (100 nm).

was the substrate upon which the original SERS discoveries were made

(Figure 6.14). All the NPN material used to build npMgF2/npAu sensors

afterwards has had smaller pores and pore densities, or etched too thinly

(Figure 6.29). Recently, a series of timed etches on a 100 nm thick NPN

substrate (Wafer 1257, Figure 6.34, Figure 6.35) has approached and su-

perseded the pore characteristics from 1085 NPN, allowing us to attempt

a new set of experiments from material that more resembles the original

template.

A number of observations point toward the structure of npAu inside



CHAPTER 6. SILICON-BASED NANOMEMBRANE USE IN SERS 232

Figure 6.35: 1257 NPN Partial Etch Pore Statistics. RIE (20s) was used to widen
pores from their baseline size. (Top Left) Minor Axis, (Top Center) Pore Equivalent Di-
ameter, (Top Right) Major Axis of nanopore histograms. (Bottom Left) Area of nanopore
Histogram. (Bottom Center) Roundness of nanopore Histogram. (Bottom Right) TEM
Aerial image used to calculate pore statistics. Tomographic reconstruction of pores from
sample estimate the thickness of the etched membrane as 68 nm thick.

the nanopores as being the key factor in SERS activity for these sensing

schemes:

• The strongest enhancement factors occur between gaps with single

nanometer sized spacings [171]. Gaps on the order of 6 nm produce

enhancement factors around 108, while gaps less than 2 nm apart

could lead to enhancement factors on the order of 1011.

• Gold is known to coalesce into thin films around 50 nm thick [172].

Below this thickness, nanoparticles or islands of gold form, before

coalescing into a contiguous film [173].

• We have observed that the thickness of the gold inside the nanopores
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can create complicated particle and thin film surfaces (Figures 6.23

and 6.22).

• Data presented in Figure 6.32 suggests that the SERS properties of

the npAu can change depending on the underlying template. A very

thin deposition of gold provided the relative best SAB for the npMgF2

in the CCD, but the relative worst SAB for the NPN substrate.

• Freestanding npAu would lack any ability to host gold nanoparticles

away from the contiguous gold film. A template could serve as a

substrate if the gold film separated into particles inside the nanopore.

• Freestanding npAu has considerably lower SERS activity than the

combined npAu/npMgF2 film stack in Figure 6.14.

Assuming that the gold structures inside the nanopores are mostly re-

sponsible for the SERS performance, if the nanoparticle separation/disin-

tegration observed in Figure 6.23 occurred for sensors measured in Fig-

ure 6.14, but not Figure 6.30 or 6.31, this could explain differences mea-

sured between them. Arranging tiny nanoparticles in such a small space

would be difficult as they are not necessarily well-adhered to the substrate.

Given the large non-linear response of SERS, it would be difficult to cre-

ate reproducible substrates which depend on nanometer sized spacings of

nanoparticles. Even small changes in the sputter deposition system could

influence the size and shape of particles deposited on substrates. How-

ever, a nanopore template provides a way to confine and limit the scale
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of gold film transformations. Furthermore, the npAu structure fabricated in

nanopores could be evaluated against SERS performance in a few differ-

ent ways:

• SERS activity could be recorded and then the Au nanostructures in

nanopores could be imaged and reconstructed using electron tomog-

raphy, in a blinded study. This provides a control against motivated

segmentations of particle structures, which is essential to defining

small gaps between these reconstructions.

• The structure of nanoparticles formed inside npAu cones can be changed

via chemical etchants, heat treatments, or other in-situ processing

which should also change SERS performance.

• The underlying substrate structure (NPN or npMgF2) could influence

the kinetics of npAu film growth/disintegration and provide changes

in SERS performance.

• If the same gold nanoparticles exist in both film stacks, removal of the

baseline NPN from npMgF2 in the fabrication flow should not impact

the SERS performance, except as an additional opacity to be consid-

ered while collecting photons or changing the refractive index of the

boundary condition for these particles. However, if the baseline NPN

removal is essential to the formation of a particular npAu structure, it

could drastically impact the SERS performance.
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• Nanoparticle (5-25 nm spheres) and nanorod features (40-70 nm

long, 10-20 nm wide, Aspect Ratio: 2-4) observed in Figure 6.23

would have certain extinction characteristics that could be predicted

with a 3D electrostatic simulation as well as potentially optimized for

the illumination wavelength. The simulation is necessary due to the

density of features, as Ni et al. [169] indicates that both the specific

curved shape of the ends of gold nanorods and the arrangement of

side-by-side nanorods (like stratified structures observed in Figure

6.23) can blue-shift the absorption peaks by hundreds of nanome-

ters. Figure 6.4 displays extinction characteristics for a large variety

of gold nanorods [158]. For 725 nm illumination, a homogeneous

nanorod population with an aspect ratio of ⇠3 would seem to be op-

timal.

Combinedwith the additional tomography techniques demonstrated here,

it would be possible to create more faithful representations of the gold

nanostructures than is commonly donewith SERS based simulations, which

would lead to better information about the enhancement of the nanostruc-

tures. A combination of fabrication method, template size, template mate-

rial, and template shape is likely to create a variety of rough surfaces and

these could be imaged, reconstructed, and simulated faithfully, with real

comparisons of SERS activity.
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Chapter 7

Summary and Outlook

In this work, we have advanced the use of silicon nanomembrane technol-

ogy to overcome limitations in novel platforms for molecular sensing. In

Chapters 2 and 3, we constructed a DNA straightening element over a sin-

gle nanopore sensor that facilitated measurements through the nanomem-

brane. In this case, the chief limitation was to create a porous cavity that

would not interfere with the ability of the sensor to attract DNA. The limi-

tation was overcome by a fabrication technique that facilitated in situ fab-

rication of a wet, porous, self-aligned cavity. In Chapter 5, we created

a Raman-silent substrate for material compatibility with a particular tech-

nique, improving the substrate for certain cell cultures by making substrate

porous. Here, the chief limitation was the silicon-derived nanomembrane

having a Raman background inimical to making biological measurements.

Silicon nanomembranes, such as pnc-Si, have strong spectral peaks near

the biological fingerprint region and are destroyed by a modest amount of

illumination power (30 mW). The limitation was overcome by a fabrication
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technique that copied the silicon-derived nanomembrane’s pore structure

into a Raman-compatible materials (MgF2); a process that is adaptable to

many other materials for other applications.

In Chapter 6, we developed a silicon-based nanomembrane SERS sen-

sor that can detect and distinguish an array of with many different an-

alytes, demonstrated here with industrially-relevant food flavoring com-

pounds sharing structural similarity to the gold-standard comparison an-

alyte (thiophenol). A key limitation of many SERS sensors is the hetero-

geneity of SERS enhancement, observed both among and within individual

sensors. This limitation was improved upon by shifting the SERS sens-

ing structure into narrowly confined nanopores, which also facilitates effi-

cient introduction of the analyte to the sensing surface. Though the SERS-

active npAu layer demands further investigation, a strategy for quantifying

the performance of the behavior was developed through TEM tomogra-

phy reconstruction techniques (Chapter 4). The combination of powerful

computational hardware, freely available software, and precise electron

microscopy tools will permit investigation into the organization of realistic

gold nanostructures at a scale that is often simulated, but not validated,

in 3D. As the spacing between such structures exponentially affects the

strength of the SERS effect, nanometer-scale positioning of nanoparticles

has a dramatic effect on the efficacy of the device.

The process flexibility of the silicon nanomembrane stems in part from

it’s basis in semiconductor fabrication technology, in which this work uti-
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Figure 7.1: Silicon Nanomembrane Microsystem. Different regions on a silicon
nanomembrane chip are defined through the use of semiconductor processing tech-
niques. These regions can be developed with individual characteristics at scale with the
appropriate process flow. Combining the chip with imprint-lithography PDMSmicrofluidics
and metallized contact patches would facilitate the creation of a lab-on-a-chip device that
can pump, filter, sense, and support reactants/analytes within the system.

lizes many different techniques to accomplish its goals. This same flexibil-

ity can be used to not only develop separate process flows for particular

applications, but to integrate and combine many different measurements

in a single miniaturized space. Figure 7.1 describes this concept.

Many separate applications of silicon-based nanomembranes have been

discussed above or researched as chemical sensors [17, 44], filters [3, 18],

cell culture substrates [4, 19], electroosmotic pumps [20] or as a protec-
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tive element [21]. These applications have the potential to be miniaturized

and optimized together at the locus of detection. This would minimize the

amount of ’dead-volume’ in a fluidic application, preventing wasteful and

inefficient use of expensive reagents, as well as permit the interrogation

of very tiny sample volumes. The layout of this microsystem could be pat-

terned using common lithographic and etching tools, after which other ma-

terials could be deposited and removed using a combination of masking

layers. These layers could include electrode contacts, observation win-

dows, nanopore or micropore filters, all made of different materials opti-

mized for their particular application. Considering a useful range of mi-

crofluidic channel cross-section geometries (50 x 50 µm to 1000 x 1000

µm), samples on the order of 1-100 µL could be efficiently transported by

electroosmotic pump, pushed through a set of size filters, observed under

a microscope, and detected by chemical sensors in a package the size of

a thumbnail.

In conclusion, there are many different strategies used in biosensing

and the silicon-based nanomembrane platform has been made useful for

many different forms of metrology. Confining molecules or reagents of in-

terest into nanometer-sized containers continues to be a fruitful area of

exploration. Facilitating other forms of metrology while maintaining the

structure of the nanomembrane is essential to the usefulness of these ex-

plorations. The versatility of the silicon-based nanomembrane platform is

an asset, and will continue to be in demand as new and challenging appli-
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cations arise.
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